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ABSTRACT. We calculate very accurately several random walk
properties on percolating clusters using various
techniques. We derive the associated critical exponents
characterizing fractal behavior and compare it to recent
conjectures about their exact value. We extend all
calculations to <cover the whole range from the critical
point to the perfect crystal, and thus observe the fractal-
to-Euclidean crossover. We find that Euclidean behavior is
achieved rather fast above the threshold point. We also
investigate correlated motion on fractals, for which we find
that it does not belong to same universality class as
regular random walk does. Finally we 1look at long-range
interaction clusters, for which we find that random walk
is of similar nature as in nearest neighbor clusters.

1. INTRODUCTION

The theory and numerous applications of random walks in a
variety of fields ranging from molecular/solid state physics
to polymers to biological proteins and many more have
attracted a continuous interest over the years, plausibly
due to their success in explaining the corresponding
phenomena studied [1]. The first pioneering work of Montroll
[2], who systematically studied their properties by
introducing the generating function method, was improved and
refined by Henyey and Seshadri [3] and by Blumen and Zumofen
[4]. Because of this we now have available closed form
solutions for the number of sites visited in an N-step walk,
S\: the mean-square displacement, Rﬂ, the probability for
return to the origin, P, (first passage time), etc. But all
this work is concerned with perfect lattices or crystals,
while it 1is recognized that the exact general solution for
doped 1lattices for all concentrations 1is a formidable
task. In this latter but very important problem it has also
recently been recognized that a mean-field approach (an
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ffective medium approximation) may well provide adequate
answers. Still it 1is expected that such an approach will
suffice for small to medium dilutions only, while it will
break down close to the critical percolation threshold. The
region of the critical point has been a subject of intensive
studies in the past, probably because of its connection to
classical thermodynamics and phase transitions. But only
recently with the advent of the notion of fractals [5,6] did
it become apparent that random walk properties at the
critical point can be evaluated exactly, something that
threw new interest in the general problem discussed here.
This 1is accomplished by introducing the fractal and fracton
dimensionalities. These are fractional numbers (dimensions)
smaller than the underbedding dimension, but their wvalue
gives an indicative measure of the disorder present, both
for the structure of the disordered lattice and the dynamics
on it. This prompted a surge of publications 1in a short
period of time that discussed conjectures, hypotheses,
numerical verifications, corrections to the scaling, etc.

In this paper we discuss our results of calculations
that monitor diffusion on disordered lattices via random
walks. We find accurate values for the fractal
dimensionalities d by calculating S, the mean number of
distinct sites visited in an N-step walk, and for the
diffusion exponent D by calculating , the mean-square
displacement. We investigate 1in detail the effects of
correlated diffusion and compare it to normal random
walk. Finally we 1look into the effects of long-range
diffusion. All these properties are calculated using a
variety of algorithms (discussed in Section 2) first at the
critical point, and then in the whole range above
criticality up to a perfect lattice, so that we study in
detail the crossover to Euclidean behavior.

It should also be noted that some efforts towards the
solution of the general problem of random  walks on
disordered 1lattices were first published by us [7] using
numerical solutions, and even though the model and methods
were rather crude, they were still successful, at least
partially, in explaining experimental data of luminescence
from organic crystals at low temperatures. But it is only
recently that more complete and satisfactory solutions are
provided through the ideas of fractals.

2. METHOD OF CALCULATION

2.1. Technique

We use Monte-Carlo simulation methods to monitor several

random walk properties. Our algorithm  has been
considerably improved in recent years, increasing both the

et T T T TN e



FRACTAL BEHAVIOR AND DYNAMICS ON PERCOLATING CLUSTERS 211

speed of operations and the size of the lattice
used. Depending on the required application we utilize two
techniques for the generation of random lattices. 1In the
first case (a) we wuse the so called cluster-growth-
technique, a method that generates and keeps in memory only
the 1lattice portions used for the random walk. The lattice
starts with one site only, and it is built continuously as
the random walk proceeds by generating more sites adjacent
to the diffusing particle. Once a site is gererated and ‘its
identity chosen it remains as such in the memory for the
whole run. Using this method only one random walk can be
executed on each lattice, which is more time - consuming but
has considerable advantages from the statistical point of
view. The effective lattice size 1is now usually 4x10°
sites i.e. 2000x2000 for the 2-dim square lattice, and
160x160x160 for the 3-dim simple cubic. Consequently, the
properties derived using this method pertain to walks that
originate on any-size cluster, whether this may be the
infinite percolating cluster or a monomer.

In an alternate approach, method (b), the whole
lattice is generated and kept in memory before the beginning
of the walk. This, although 1is a slower process, is
necessary when it is required to find the <critical
percolating point exactly. In the previous case (a) the
nominal «critical occupational probability p was assigned,
but in the actual numerical computation, due %o statistical
fluctuations, no exact realization of p 1is attained. After
several realizations only its average value is
attained. Thus, some realizations are well above p while
others have not percolated at all. If the exact point is
required it may turn out that this average quantity 1is not
good enough, since close to criticality diffusion is not a
linear process. Here 1in case (b) the lattice is initially
generated at random well below the critical wvalue, say at
p=0.55 for the 2-dim square lattice. Then a certain number
of closed sites is changed to open, their exact number and
location,, being recorded. Usually this number is a power of
2, say 2 . If after this change there is still no infinite
cluster a new additional set of sites changes identity and
the process 1is repeated until the «critical point is
surpassed. At this point the last set of sites is removed
(i.e. changed back to closed sites), it 1is cut 1into two
equal pieces and only the first half is now added; thg
lattice is tested again for criticality, but now with 2
sites changing 1identity. This process continues with the
repeated dichotomg of the original number (2'), wuntil it
goes down to 2., At this point we are assured that we are
exactly at the critical point, 1.e. one single site has
caused the appearance of the percolating cluster. Testing
for criticality is done using a new version of the Cluster-
Multiple-Labelling-Technique (CMLT). The details of this
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version are explained in the Appendix. We only need to apply
the CMLT as many times as the power of 2, i.e. here we apply
it 10 times, something not very time coysuming. Using this
technique we employ lattices of 2.5x10° sites, i.e. 500x500
for the square 2-dim case.

2.2. Computer language

It is commonly agreed that for Monte-Carlo simulations of
the type reported here Fortran is not the best available
language, since Fortran 1is best suited for numerical
calculations, while the present work involves mainly integer
manipulations and conditional statements. Another high level
language (and easy to learn) that it better suited is C
language. Of course, one would benefit the most by going
to a low-level language, such as the assembler that each
machine has. However, if it is necessary to use Fortran
there are several points worth mentioning which if properly
used can provide an added advantage. Since only five
alternative pieces of information are needed at each time
(the identity of a site, open or closed, and whether a site
has been visited before or not, or whether it has not been
defined), we can utilize more efficiently the length of each
computer word by breaking each 32 bit word in four 8 bit
sections. We now store the information for four sites in
one word and effectively 1increase the size of available
memory by a factor of 4. 1In Fortran this is done by use of
a subroutine with the main array in Logical*l and Integer*4
variables declaration, occupying the same memory space and
continuously identified via an Equivalence statement. We
thus avoid the difficult task of byte manipulation in
machine language.

All different topologies in 1-dim, 2-dim, and 3-dim
lattices are reduced to a one-dimensional array in the
memory, so that it 1is not necessary to reach 1into the
virtual memory as frequently. Thus the number of page-
faults and transfers is decreased, and the overall speed is
increased.

All work presented here was performed in a mini-
computer, VAX 11/750 by Digital Equipment Corporation, with
4 Mbytes of direct memory and 550 Mbytes of virtual memory,
and with the VMS operating system.

3. RESULTS
3.1. Spectral dimension

It 1is well established by now that the average number of
distinct sites visited in an N-step walk Dbehaves as:
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ds/2

S N . (1)

Nf‘u
Here d, is the scaling exponent called the spectral
(fracton) dimension, and it was the initial hypothesis [6]
that d, should have a universal value of dy=4/3 for all
lattices of all dimensionalities. But it was later
conjectured [8] that this rule breaks down for d<2 (where d
is the Euclidean underbedding dimensionality), but is still
valid for d>2. We will look into these assumptions
carefully to check whether they can be verified.

Depending on what clusters does one use for the point
of origin the spectral dimension of Eg. 1 will have
different values. We use the notation 4, for case (b) of the
previous section, i.e. for runs that can originate only on
the largest percolating cluster. For case (a), i.e. for runs
on any-size cluster we will have an analogous equation:

d;/z
Sva N (2)

But it has been shown [9] that ds and d; are related
through:

- E—— ] (3)

Figure 1: The number of
sites visited S as a
function of the number
of steps N for 2-dim
lattices. These are
averages of 1000
realizations for walks
that originate on any-
size cluster (method
a. Bottom to top:
p=0.5931, 0.60, 0.63,
0.65 0.70, 0.80, 0.90,
and 1.00.

S(N)
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where f§ and v are the static percolation exponents. When one
of the d_ or d, is calculated the other one can easily be
deduced. Figure 1 shows a plot of 1nS, vs. 1lnN for several
different occupational probabilities p for the 2-dim
lattice, and Figure 2 the same plot for 3-dim lattice. The
lowest curve 1in each case pertains to the critical
percolating threshold and from its slope we receive [10]:

d. = 1.23 = 0.02 (2-dim) (4)

’
S
’

dS

"

1.06 = 0.02 (3-dim) (5)

Using Egq. 3 and the values of Eg. 4 and 5 we get:

ds = 1.30 = 0.02 (2-dim) (6)

ds = 1.33 £ 0.02 (3-dim) (7)

Using method (b), the method of the exactly percolating
clusters, we calculate again Sy but now for runs on the
exactly incipient percolating cluster only. In Figure 3 we
plot 1n§, vs. 1nN for the 2-dim lattice. We observe that the
data is almost fit on a straight line, but there are some
deviations in the early time part. To avoid any such

Figure 2: Plot similar
to Fig. 1 but for 3-dim
lattices. Bottom to
top: p=0.3117, 0.32;
0.33 0.35, 0.40, 0.50,
0.75, and 1.00.
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a_/2
complications we notice from Eg. 1 that S, /N S should be
constant 1in time. We plot this quantity as a function of N
in Fig. 4. Not being sure of the exact value of d; we treat
it as an adjustable parameter, and we plot the range

1x103

Figure 3: Plot similar
to Figure 1 but using
method (b). The
calculation is at the
critical point exactly,
i.e. p=0.5931. These
results are averages of
10000 realizations. The
continuous 1line 1is a
straight line to show
the deviation from
linearity.

ix10!

1x102 1x103 1x104

1.40

ﬁb Figure 4: Plot of
& + * S /N S vs. N of the

same data as in the
previous figure. Here:
Rl d =1.27, 1.28, 1.29,
1.30, 1.31, 1.32, and
1.33 (top to bottom).
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d,=1.27 - 1.33. We observe that the values of d,=1.29 or
1.30 are the ones that produce lines independent of time
(again, aside from the early time part). Of course, if  we
use Eg. 3 to calculate dg we will receive: d,=1.23. We see
that the direct calculation of dg gives a value in agreement
with the previous method [11].

Thus, in calculating the spectral dimension we employed
two different approaches, methods (a) and (b), and they both
produce the same result, i.e. for 2-dim lattices the proper
value of the spectral dimension is dg¢=1.30%£0.02, 1in
agreement with the Aharony-Stauffer [8] prediction, and a
deviation of about 2% from the Alexander-Orbach-Rammal-
Toulouse [6] theory. In 3-dim lattices d,=1.33, as
originally proposed.

3.2, The diffusion exponent

The mean-square displacement at the fractal limit behaves
as:

w]

5 2/

RN v N (8)

Depending at the point of origin we agajin have two exponents
from Eg. 8, D and D (just like d; and d5). Figure 5 shows
lnRi vs. 1nN for several different p values for 2-dim
lattices. From the slope of the lowest curve we derive a
value for the D exponent:

— Figure 5: The mean-
square displacement Ri
as a function of the
number of steps N for
the same p and the same
data as in Fig. 1.
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D = 2.89 % 0.05 : (9)

This value of D as calculated for the long time limit is in
good agreement with previous work [12], but for small N
(N=300 steps).

3.3. Crossover to Euclidean behavior

We can observe the crossover to Euclidean behavior in Fig. 1
by 1looking at the several curves in this figure. We notice
that only the bottom and the top are straight 1lines. The
bottom because it obeys Eg. 1 as it is in the fractal limit,
the top Dbecause at p=1.00 there is an effectively simple
power dependence, in spite of the well known logarithmic
correction for the 2-dim walk. But for all intermediate p
the slopes are varying and some lines are curved, with the
curvature being a function of time, thus showing that each
different p has a different effective spectral dimension
that 1is time-dependent. The same behavior is observed at
Fig. 2 for the 3-dim lattices. In order to see how fast does
this crossover occur we plot the effective d;, for the long
time limit (N=200000 steps) as a function of the
occupational probability p. The result is shown in Figure 6,
for both the 2-dim and 3-dim lattices. One can see that for
both cases the effective d, sharply increases in the region

S _
o o o o o
&
1 oo © ©
000 Figure 6: The effective
o o o dy as a function of the
©1L O ® occupation probability
- p, for 2-dim (lower)
® o and 3-dim (upper)
+ o o lattices, from the long
ds ® time  limit (N=200000
| o 8 steps).
8t °
V]
o
(=]
| + + —
.25 0.50 0.75 1.00
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immediately above the critical point and it 1is approaching
fast the classical value of 2. The limiting values here are:
1.98 for the 3-dim case, and 1.89 for the 2-dim case (a
discrepancy from the classical value is expected here due to
the logarithmic correction term that the 2-dim formalism
contains [2]). From the curvature of the lines in Fig. 1 and
2 we would expect that the shape of the lines in Fig. 6 is
time dependent. We found this to be true, however, we also
observed that at any time period the main feature of the
sharp rise remains intact.

As a consequence of the crossover behavior we expect
that scaling will be valid only in a small region close to
the threshold point. The scaling relationship is [13]:

d./2 1/(2v=-B+u)
Sy =N f [(p/p, -1) N ] (10)

where v,f, and pu are the usual percolat:on exponents. In
Fig. 7 we have a scaling plot for the 2-dim and 3-dim
walks. We see that the different p values that fall within
the scaling curve are all in the range: 0.31-0.35 (3-dim),
and 0.59-0.65 (2-dim). Several time ’intervals are also
included and all fall in the curves shown. Scaling breaks
down for p>0.35 (3-dim) and for p>0.65 (2-dim), since as it
can also be seen from Fig. 6 above these 1limits the
Euclidean values are already attained.

Y
(=]
Q
T Y
v Figure 7: Scaling plot
d./2
. of S /N(7s"°) wvs.
1/(2v-B+u)
=1 = (p/pc -1 ) N
Y 2-dim lattices (lower,
Z 0.59<p<0.65), 3-dim
(upper, 0.31<p<0.35),
X& all for several time
s = y y Y intervals.
<71 X
4 Y
Y“xx& 7 <
jﬁy
3 3 :

=.0.50 1.30 3.10 4.90
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3.4, Short-time corrections

As it is seen from Fig. 3 and 4 for small values of N, say
up to N=1000 steps, Eg. 1 does not hold. In Fig. 3 linearity
is not obtained for the entire range tested, while in Fig. 4
we see that the factor SN/NdS"2 is not constant in time, but
it is decreasing up to the value of about N=1000 steps. This
leads wus to believe that additional corrections to scaling
are necessary in order to properly describe the early-time
limit. Apparently, 1in early times the particle samples new
lattice areas at a faster pace than after some time has
elapsed, and some "state of equilibrium" is’reached. This is
also in agreement with previous assumptions [14,15]. The
additional term is contained in the following:

d /2
Sy v N (1 + ANY) (11)

where w is the new exponent and is always necessarily
negative, so that the contribution of the second term in
parenthesis goes to zero for large N. Setting the constants
of proportionality (a ard b) in Eg. 11 and rearranging we
receive:

ds/2 o
SN/N - a = bN (12)
wn
Figure 8: Plot of
B SN/Nds/2 vs. N where
= d =1.2S8 and a=1.184 for
" B the same data as 1in
o Fig. 3. The slope
u} (giving the exponent w)
N mzhb is  taken from a
Y a straight 1line drawn at
x small N,
wn
!P
% R e+
= 5 l 5 |
1x102 1;&03 1xi04
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a./2
Here a represents the constant § /N ° value for large N,
which as seen from Fig. 4 has the value of
a=1.18. Therefore, if we plot Eg. 12 directly in logarithmic
form we will recover immediately the w exponent. This is
done in Fig. 8 using the same data as in Fig. 4. We consider
the slope at short times because this 1is where the
correction term predominates. At the straight 1line segment
in Fig. 8 the slope is: w=-0.48%0.08. We notice that forcing
an exponent dy=4/3 gives a=0.99 and w=-0.47, showing that w
is not as sensitive to ds as, obviously, a is.

3.5. Correlation effects

Correlation in diffusional motion has been shown in the past
to be a necessary idea for the explanation of experimental
data ranging from the diffusion of hydrogen in metals [16]
and models of diffusion in concentrated lattice gases [17]
to the relaxation mechanism of low-lying excited states of
organic molecules at low temperatures [7] as studied by the
use of random walk hopping models [18]. By correlation here
we mean the retention of the directional memory over a
certain number of lattice spacings. This is quantitatively
described by the fraction p , which is the probability of a
forward jump, and it is in the range: 1/a<p+<l.00, where a
is the lattice coordination number. Recently we introduced
[19,20] a new model that 1incorporates the effects of
correlation in the usual [4] random walk models, first on
perfect lattices [19], and then on mixed binary lattices
[20]. Of interest to us here is whether correlated random
walks behave the same way as regular walks and if the
associated properties belong to the same universality class
as the walks of the previous sections. For perfect lattices
ve extended Montroll's work [2] to include correlated
motion. Thus, the formulae for SN for uncorrelated walk are:

sy = (8v/mY/2 . (1-dim) (13)
Sy = aN/1nN Fi s s (2-dim) (14)
SN = ¢cN +erene (3-dim) (15)

If we now include correlation by going through the
generating function method and incorporating the correlation
factor [19] we rederive these formulae as follows:

sy = (Ben/m/2 4 (1-f) 4L, {1=dim} (16)
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TEN . .
Sy = In(8IN) = #(f-1)/2 ‘- (2-dim) (17)
(1 - py) EN

N -~ 1+0.5(f-1) + (I-p,)

S Fiy o (3-dim) (18)

where f is the correlation factor (it is a function of p ,
but has different form for each dimensionality), and P fis
the return probability for uncorrelated walk. We see ‘that
we arrive at relatively simple modifications as compared to
the uncorrelated walk model.

The problem 1is considerably more complicated in
disordered lattices. Our resul{s are given in Fig. 9. We
evaluate the spectral dimension d, for correlated walks for
several different values of the correlation parameter p, ,
and for several different occupational probabilities p. e
curve marked p =0.25 is the limiting case of no correlation
at all, since in the square 1lattice all four directions
carry the same 0.25 probability of scattering. It is also
the same curve as that in Fig. 6.

We focus attention on the other curves in Fig. 9,
which refer to higher p (p >0.25) values. In the fractal
limit (p=0.60) we see that ﬁs sharply decreases as p
increases. For pf=0.95 (at p=0.60) we see that d,=0.66 onlyﬁ
This sharp decrease is a conseguence of the fact that at the
critical percolation threshold correlated walks have a much

Figure 9: The spectral dimension
d, vs. p, as a function of the
forward correlation parameter p, .
The spectral dimensions are
calculated in the 1long time
limit, N=200000 steps, from walks
that may originate on any-size
cluster.

o5l | | | |
Qs 0.7 0.8 0.8 10

CONCENTRATION (p)
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smaller S, value than uncorrelated walks because, as was
originally shown in the past [18], the particle indulges for
long times in revisiting the same row of sites over and over
again. We also used this idea [7] to interpret experimental
data on mixed naphthalene alloys at 2 K.

As p increases, one observes for each 3 value the
corresponding crossover to the classical behavior, since
now, above p=0.80, correlated walks are much more efficient
than uncorrelated ones. The region 0.70<p<0.80, as seen
from Fig. 9, 1is the "crossover region" between the
different p values. At p=1.00 our calculations are in
excellent ag@eement with formulae 16-18.

Thus, in this preliminary study for correlated random
walk motion on fractal structures we investigated two types
of crossover that occur, i.e. the crossover from fractal to
Euclidean behavior for any type of walk, and the crossover
from uncorrelated to correlated walk at any given p. We
found that correlated random walks do not belong to the same
universality class as simple walks. We notice that complete
analytical solutions for the curves of Fig. 9 exist only
for p=1.00, but more work 1is needed to quantitatively
explain the behavior of the other curves.

3.6. Long-range interactions

It has been shown in the past [21] that the static critical
percolation exponents B, v, v obey the wuniversality
hypothesis independent of the interaction range, for finite
range cutoffs. It 1is interesting here to test the same
hypothesis for the dynamic exponents examined here, i.e. the
spectral dimension and corresponding crossovers., The
interest stems from the well known experimental observation
that triplet exciton transfer in organic molecules at low
temperatures involves such 1long-range random hops on
percolation clusters. The critical occupational probability
P. is a function of the interaction range, and it has been
derived for various interaction ranges (R=1-5) by Monte-
Carlo simulation [21] and by a position-space
renormalization group approach [22]. Some of these p values
are: p =0.5931 (R=1), p =0.29 (R=2), p =0.16 (R=3), p, =0.10
(R=4),  p =0.07 (R=5), p =0.05 (R=6), etc. We use a form:
Pre™® for' the stepping probability, where r is the distance,
and a gives the shape of the curve for the distribution of
distances.

The random walk process 1is monitored here in a similar
way as in our previous calculations through S, and Ri, with
the only difference now that 1long steps are allowed
according to the Pne™® equation. We find a complete analogy
with the nearest neighbor case. Figure 10 is a plot of InS,
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Figure 10: Plot of 1nS
vs. 1InN for the case
a=0, interaction range
R=2, and four different
p, p=0.32, 0.31, 0.30,

and 0.29 (top to
bottom) . These are
averages of 1000

realizations on 500x500
lattices. The random
walks originate on any-
size cluster.

Figure 11: Plot of

SN/Nds/2 vs. N for
different values of the
parameter a. Here a=0,
0.5, 2.0, 3.0, 5.0, and
10.0 (top to bottom).
Also, p=0.29 (range of
interaction R=2). We
used ds=1.23.
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vs. 1nN, similar toc Fig. 1, but for R=2 and we see that it
yields a slope of d,=1.24, same as Eq.,y t. To further
investigate the scaling exponent we plot S, /N s vs. N 1in
Fig. 11 for different values of the parameter a in the
range: 0<a<10.0, for p_=0.29 (interaction range R=2). We use
d,=1.23, and we see that for a=0 (all stepsdggually probable
independent of distance) the quantity S /N *“ above N=2500
steps 1s constant 1in time. But for a>0, 1i.e. hopping
probabilities that decrease with range, we see it takes
longer (more steps) to reach the asymptotic limit. This is
expected since it takes, on the average, several nominal
time steps before an occurence of a long-range step.

We note that this model is based on defining and using
a range (distance) dependent transition probability. But the
actual form of this dependence (for example, the e " used
here) does not enter explicitly in the calculation. Any
other proper form, such as for example r " (n=integer),
could have been used with same results. One need only
establish the proper correspondence. We conclude that long
range random walks on percolating clusters behave similarly
to simple random walks, with scaling and universality still
intact. But for steeply falling-off step probabilities we
find an asymptotic behavior that is approached more
gradually in time. It would be interesting to check whether
an experimental system (where the cutoff range itself is a
function of time) will also exhibit an effective fractal
dimension.

ACKNOWLEDGMENT., Parts of this work were performed with
K.W.Kehr, A.Keramiotis, and R.Kopelman, whose collaboration
is greatly appreciated.

APPENDIX

The cluster distribution is performed here using a new
version of the Cluster-Multiple-Labelling-Technique
(CMLT). The principal idea is the same as in CMLT, 1i.e. in
cluster coalescence no sites need to be relabelled, and once
a site is labelled, it retains its original label throughout
the sweep of the lattice. The difference from the original
method [23] is a new index processing used here. Instead
of applying the routine CLASSIFY [23] at every site
labelling in order to determine the proper cluster label of
all neighboring sites we perform a single second sweep of
the lattice that does the same operation. But this way, each
site is checked only once in the second sweep, instead of
twice that routine CLASSIFY does, for the square lattice
topology, where every site is a neighbor to two different
sites. The algorithm is given below:
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Figure 12: Flow chart for the site labelling assignment, for

the first lattice sweep.
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Occupied (open) sites are labelled 1 and empty (closed)
sites are labelled 0. All labelling is done column by column
starting at the top of the 1left-most column. We label each
open site wusing a one-dimensional array N as follows: If
both sites above and to the left of an open site 1 are
closed sites, 1 takes the current index of the array N,
which in the beginning is set equal to 1. If only one of
these sites 1is open then i takes the current index of the
open site, which, however, may be different from 1its
original wvalue. If both these sites are open then site I
and the current index of the site situated above it
simultaneously take the current 1index of the left site.
This is all carried out in the one-dimensional array N,
where the current index k (k=1, 2, 3, ..., etc.) of site i is
the index which satisfies the equation N(k)=k. The value of
the 1index for site I that will be stored in the array N is
determined as follows: If the original index of site (i-1)
is k] and the current index of site (i-1) is k,, then we
set for site i N(k,)=k, and N(k,)=k, so that k, is now the
stored index for this site.  The flow chart for this
algorithm is given in Figure 12. When all index assignment
in the lattice is finished we go back for the second sweep
to renumber all open sites which do not have the 1latest
assigned index. We then assign all identical indexes to a
new one-dimensional array Z, where we store the size and
latest index of each cluster.

To make this process better understood we work out an
example of index processing for a 20x20 sguare lattice as
shown in Fig. 13. Here the assigned p is p=0.56. In part (a)
we have the 1lattice as it 1is formed using 0 and 1, for
closed and open sites, respectively. In part (b) we begin by
labelling the open sites of the first column. Following the
algorithm in Fig., 12 the first open site takes the current
index of the array N (N(1)=1), the second and third open
sites also take the value 1, which is the current index of
the site above them. The fourth site takes the current index
of the array N (N(2)=2), and so on. When we start labelling
the second column the first open site takes the current
index of its left site, which is 1, the next open site takes
the value 5, while the current index of the array N is
taking the same value. The first site in the third column
takes the value 6. The next one takes the wvalue 1, while
N(6)=N(1). Thus, when we label the fourth column the first
open site takes the value 5 because now the current index
of its left site is 5 (N(6)=1, N(1)=5, N(5)=5). Using this
method we finish labelling all open sites in the
lattice. In part (c), in the second sweep we label again all
open sites which do not have their latest index. We see
that the percolating cluster has as its.index the value of
50, and is made of 83 lattice sites, the second largest
cluster has a size of 71 and lattice index of 22, and so on.
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Figure 13: An example of a cluster distribution for a 20x20 16
lattice. Part(a) A binary, substitutionally random square
lattice with an assigned p=0.56. Part (b)Index assignment
after the first sweep. Part (c) Index assignment after the
second sweep.
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