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ABSTRACT. We calculate very accurately several random walk
properties on percolating clusters using various
techniques. We derive the associated critical exponents
characterizing fractal behavior and compare it to recent
conj ectures about the i r exact value . We extend all
calculations to cover tire whole range from the critical
point to the perfect crystal, and thus observe the fractal-
to-Euclidean crossover. l,le find that Euclidean behavior is
achieved rather fast above the threshold point. we also
investigate correlated motion on fractals, for vhich we find
that it does not belong to same universality class as
regular random walk dces. Finally we look at long-range
interaction clusters, for which we find that random walk
is of s imi lar nature as in nearest ne i.ghbor clusters .

1. INTRODUCTION

The theory and numerous applications of random valks in a
variety of fields ranging from molecular,/solid state physics
to polymers Eo biological proteins and many more have
attracted a continuous interest over the years, plausibly
due to their success i.n explaining the corresponoing
phenomena studied t1l. The first pioneering vork of Montroll
t21, who systema+-ica1ly studied their properties by
introducing the generating function method, was improved and
refined by Henyey and Sesh;:dri t3l and by Blumen and Zumofen
t4l. Because of this we now have available closed forrn
solutions for the number of sites visited in an N-step vaIk,
S* , the mean-sguare displacement , F.2N, the probabi l iiy f or
return to the origin, Po (first passage time), etc. But all
this vork is concerned with perfect lattices or crystals,
while it is recognized that the exact general solution for
doped lattices for all concentrations is a formidable
task. In this latter but very important problem it has also
recent!.y been recognized that a mean-fieId approach (an
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effective medium approximation) may r*ell provide adeguate
answers. Stil1 it is expected that such an approach will
suffice for sma]l to medium dilutions on1y, while it will
break down close to the critical percolation threshold. The
region of the critj.cal point has been a subject of intensive
studies in the past, probably because of its connection to
classical thermodynamics and phase transitions. But only
recently with the advent of the notion of fractals [5,5] did
it become apparent that random walk properties at the
critical point can be evaiuated exactly, something that
threv new interest in the general problem discussed here.
This is accomplished by introducing the fractal and fracton
dimensionalities. These are fractional numbers (dimensions)
smaller than the underbedding dimension, but their value
gives an indicative measure of the disorder present, both
for the structure of the disordered lattice and the dynamics
on it. This prompted a surge of publicalions in a short
period of time that discussed conjecrures, hypotheses,
numerical verifications, corrections to the scaling, etc.

In this paper we discuss our results of calculations
that monitor diffusion on disordered lattices via random
wa1ks. We f ind accurate vaLues for the fractal
dimensionalities d" by calculating S.,, the mean number of
distinct sites visited in an N-step ''waJk, and for the
diffusion exponent D by calculating (, the mean-sguare
displacement. We investigate in detail ' the effects of
correlated diffus ion and compare it to normal random
walk. Finally we look into the effects of long-range
diffusion. All these properties are calculated using a
variety of algorithms (discussed in Section 2) first at the
cr j.tical point, and then in the whole range above
cr'iticality up to a perfect lattice, so that we study in
detail the crossover to Euclidean behavior.

It should also be noted that some efforts towards the
sofution of the general problem of random walks on
disordered lattices were first. published by us i7 I using
numerical solutions, and even though the model and methods
!/ere rather crude, they vrere still successful, at least
partiaLly, in explaining experimental data of luminescence
from organic crystals at Iow temperatures. But it is only
recently that more complete and satisfactory solutions are
provideC through the ideas of fractals.

2. METHOD OF CALCULATION

2.1. Technique

I.]e use Monte-Carlo simulation methods to monitor several
random walk propert ies. Our algorithm has been
considerably improved in recent years, increasing both the
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speed of operations and the size of the lattice
used. Depending on the required application we utili.ze tr,ro
techniques for the generation of random lattices. In the
f irst case ( a) we use the so called cluster-growth-
technique, a method that generates and keeps in memory only
the lattice portions used for the random wa1k. The l-attice
starts vith one site on1
the random walk procee

Y,
ds

and it is built continuously as
by generating more sites adjacent

to the diffusing particle. Once a site is gererated and'its
identity chosen it remains as such in the memory for the
whole run. Using this method only one random walk can be
executed on each lattice, which is more time , consuming but
has considerable advantages from the stati.stical point of
view. The effective latfice size is now usually 4x106
s ites i . e. 2000x2000 for the 2-dim square lattice, and
150x150x150 for the 3-dim simple cubic. Consequently, the
properties derived using this method pertain to valks that
originate on any-size cluster, whether this may be the
infinite percolating cluster or a monomer.

In an alternate approach, method (b) , the whol-e
lattice is generated and kept in memory before the beginning
of the wa1k. This, although is a slower process, is
necessary when it is reguired to find the critical
percolating point exactly. In the previous case (a) the
nominal crit.ical occupational probability p- was assigned,
but in the actual numerical computation, due'to statistical
fluctuations, no exact realization of p- is attained. After
several realizations only its 'average value is
attained. Thus, some realizations are well above p- while
others have not percolated at all. If the exact'point is
required j.t may turn out that thi.s average quantity is not
good enough, since close to criticality diffusion is not ajinear process. Here in case (b) the lattice is initially
genera-,ed at random well below the critical value, sdy at
p=0.55 for the 2-dim square lattice. Then a certain number
of closed sites is changed to open, their exact number and
Iocation,,n being recorded. Usually this number is a power of
2, say 2'- If after this change there is still no infinite
cluster a ne\r additional set of sites changes identity and
the process is repeated unt i 1 the cr i t i cal- po i nt j.s
surpassed. At this point the last set of sites is removed
(i.-e. changed back to ttosed sites), it is cut into two
equal .pieces and only the first half is no'r added; th6
lattice is tested again for criticality, but now vith 2
sites changing identity. This process conUinues with the
repeated ai6noiomy ot thi original'number (210 ), until it
gobs down to 26 . At this p5int we are assured that we are
exactly at the critical point, i.e. one single site has
caused the appearance of the percolating cluster. Testing
for criticality is done using a new version of the Cluster-
Multiple-Labelling-Technj.que (CMLT). The details of this
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version are explained in che Appendix.
the CMLT as many times as the power of
it 10 times, something not very time c
technique we employ J-attices of 2.5x1
f or the sguare 2-d j.m case.

dimens ion

established by now that the
visited in an N-step walk
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average number of
behaves as:

We only need to apply
2, i . e. here vre apply

opsuming. Using this
0' sites, i.e. 500x500

2.2. Computer language

It is commonly agreed that for Monte-CarIo simulations of
the type reported here Fortran is not the best available
Ianguage, s ince Fortran is best suited for numerical
calculations, while the present work involves mainly integer
manipulations and conditional statements. Another high jevel
Ianguage (and easy to learn) tnat it better suited is C
language. Of course, one would benefit the most by going
to a low-level language, such as the assembler that each
machine has. However, if it is necessary to use Fortran
the:'e are several points worth mentioning which if properly
used can provide an added advantage. S ince only f ive
al-ternative pieces of information are needed at each time(the identity of a site, open or closed, and whether a site
has been visited before or not, or whether it has not been
defi.ned), we can utilize more effi.ciently the Iength of each
computer word by breaking each 32 bit word in four 8 bit
sections. We now store the information for four sites in
one word and effectively increase the size of available
memory by a factor of 4. In Fortran this is done by use of
a subroutine with the main array in Logical*I and Integer*4
variables declaration, occupying the same memory space and
continuously identified via an Equivalence statement. We
thus avoid the difficult task of byte manl.pulation in
machine language.

A11 different topologies in 1-di.m, 2-dim, and 3-dim
lattices are reduced to a one-dimensional array in the
memory, so that it is not necessary to reach into the
virtual memory as frequently. Thus the number of page-
faults and transfers is decreased, and the overall speed is
i ncreased.

A11 work presented here was performed in a mini-
computer, VAX l-l-/750 by Dig ital nqui.pment Corporat ion, with
4 Mbytes of direct memory and 550 Mbytes of virtual memory,
and rsith the VMS operating system.

3. RESULTS

3.1. Spectral

It is well
distinct sites

i
I
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N

But it has been shor^rn t9l that
through:

(1)

(2)

ds and d are related

sN' N
d/2c'

o. /2s'

Here d" is the scal ing exponent called the spectral
(fractoi) dimension, and it was the initial hypothe!is t5l
that d" should have a universal value of d.=4/3 for all
latticts of all dimensionalities. But - it was later
conjectured tBl that this rule breaks down for d<2 (where d
is the Euclidean underbedding dimensionality), but is sti1l
valid for d>2. We will look into these assumptions
carefully to check whether they can be verified.

Depending on what clusters does one use for the point
of origin the spectral dimension of Eq. 1 r+i11 have
different values. we use the notation d" for case (b) of the
previous section, i.e. for runs that ian originate only on
the largest percolating cluster. For case (a), i.e. for runs
on any-size cfuster we will have an analogous eguation:

SNt

d.'= fl (2s s'

S
I

d
d 9/v

(3)

Figure 1: The number of
sites visited S" as a
function of the number
of steps N for 2-dim
lattices. These are
averages of 1000
realizations for vaLks
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!/here p and / F,re the static percoiation exponents. When one
of the d. or d'" is calculated the other one can easiJ.y be

.5)deduced.- Figure 1 shows a plot of InS" vs. lnN for severaL
different occupational probabilities p for the 2-dim
lattice, and Figure 2 the same plot for 3-dim lattice. The
lovest curve in each case pertains to the critical
percolating threshold and from its slope ve receive [10]:

d= = ,.r: t 0.02 (2-dim) (4)
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d 1.05 ts

Using Eq. 3 and the values

ds

d 1.30 t

0.02 ( 3-dim)

of Eq. 4 and 5 we get:

0.02 ( 2-dim)

0.02 ( 3-dim)
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(s)

(5)

1.33 t (7)

Using method (b), the method of the exactly percolating
clusters, we calculate again S*, but now for runs on the
exactly incipient percolating cluster on1y. In Figure 3 we
plot InS" vs. l-nN f or the 2-dim lattice. 9le observe that the
data is almost fit on a straight line, but there are some
deviations in the early time part. To avoid any such

Figure 2: Plot s imi lar
to Fig. 1 but for 3-dim
lattices. Bottom to
top3 P=0.3117, 0.32,
0.33 0.35, 0.40, 0.50,
0.75, and 1.00.

(\l
(:)

LDct

t
CI

Z
a

(Y)o

o

h83
555

N

lr106ht05trEf

I

t
I
i

I



FRACTAL BEHA\'IOR AND DYNAMICS ON PERCOLATING CLUSTERS
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F igure 3 : Plot s imi lar
to Figure I but using
method (b). The
calculation is at the
critical point exactly,
i . e. P=0. 5931. These
results are averages of
10000 realizati.ons. The
cont inuous I ine is a
straight line to show
the deviat ion from
linearity.

Figure 4t PIot of
d/2

S"/N s vs. N of the
same data as in the
previous figure. Here:
d =1,27 , 1.28, 1.29 ,1.30, 1.31, !.32, and
1.33 (top to bottom).

I1-s

compJ.ications we notice from Eq. l that S*,/Nds/2 should be
constant in time. We plot this quantity as a function of N
in Fig.4. Not.being sure of the exact value of d, we treat
it as an adjustable parameter, and we plol the range
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d.=1.27 - 1.33. I.ie observe that the values of d.=1.29 or
1:30 are the ones that produce lines independent of time
(again, aside from the ea;1y time part). of gourse, if we
use Eq. 3 to calculate d, we will receive: dr=I.2:. t^?e see
that the direct calculation of d, gives a value in agreement
r+i th the prev ious method t 11 I .

Thus, in calculating the spectral dimension we employed
two different approaches, methods (a) and (b), and they both
produce the same result, i.e. for 2-dim lattices the proper
value of the spectral dimens ion is d. =i.3010. 02, in
agreement with the Aharony-Stauffer tBl prediction, and a
deviation of about 2Z from the Alexander-Orbach-Rammal-
Toulouse t5l theory. In 3-dim lattices dr=1.33, as
originally proposed.
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Depending at the point of origin we again have two
frop Eq. 8, D and D (just like d, and di). Figure
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D'=2.89! 0.05

This value of D as calculated for
good agreement with previous work
(x=300 steps ) .

the long r ime l imit is
ll-zl, but for smalf
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(s)

in
N

3.3. Crossover to Euclidean behavior

We can observe the crossover to Euclidean behavior in Fig. 1
by looking at the several curves in this figure. We notice
that only the bottom and the top are straight lines. The
bottom because it obeys Eq. 1 as it is in the fractal 1imit,
the top because at p=f.00 there is an effectively simple
power dependence, in spi*-e of the wel-1 known logarithmic
correction for the 2-dim walk. But for all intermediaEe p
the slopes are varying and some lines are curved, with the
curvature being a function of time, thus showing that each
different p has a different effective spectral dimension
that is time-dependent. The same behavior is observed at
Fig. 2 for the 3-dim lattices. In order to see how fast does
this crossover occur we plot the effective d' for the tong
time limit (N=200000 steps ) as a f unction of thre
occupational probability p. The result is shorvn in Figure 5,
for both the 2-dim and 3-dim lattices. One can see that for
both cases the effective d, sharply increases in the region
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Figure 5: The effective

o ds as a.function of th
occupatlon probabilit
p, for 2-dim ( lower
and 3-dim (upper
lattices, from the 1on
time limit (N=20000
steps ) .
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immediately above the critical point and it is approaching
fast the classical value of 2. The limiting values here are:
1.98 for the 3-dim case, and L.B9 for the 2-dim case (a
discrepancy from the classical value is expected here due to
the logarithmic correction term that the 2-dim formalism
contains t2l). From the curvature of the lines in Fig. I and
2 'we would expect that the shape of the l ines in Fig. 5 is
time dependent. We found this to be true, however, w€ also
observed that at any time period the main feature of the
sharp rise remains intact.

As a consequence of the crossover behavior we expect
that scaling will be valid only in a smal1 region close to
the threshold point. The scaling relationship is [13]:

where v,F, and g are the usual percolat:on exponents. In
Fig. 7 we have a scal i.ng plot f or the 2-dim and 3-dim
walks. We see that the dif f erent p values that f all r.'rithi.n
the scal ing curve are all in the range: 0. 31-0. 35 ( 3-dim) ,
and 0 .59-0.55 ( 2-dim) . Several t ime -intervals are also
included and all fa11 in the curves shown. Scaling breaks
down for p>0.35 (3-dim) and for p>0.55 (2-dim), since as it
can also be seen from Fig. 5 above these limits the
Euclidean values are already attained.
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3.4. Short-t ime correct ions

As it is seen from Fig. 3 and 4 for small values of N, SEy
up to N=l-000 steps, Eq. 1 does not hold. In Fig. 3 linearity
is not obtained for the entir^e range tested, while in Fig.4
we see that the factor SN/Nd'/2 is iot constant in time, but
it is decreasing up to the value of about N=1000 steps. This
leads us to believe that additional corrections to scaling
are necessary in order to properly describe the early-time
1imit. Apparently, in early times the particle samples new
lattice areas at a faster pace than after some time has
elapsed, and some "state of equilibrium" is'reached. This is
also in agreement with previous assumpt ions [14,15 ] . The
additional term is contained in the following:

d/2
S' ( 11)N (r + ANo)SN'

where co is the ne'
negative, so that
parenthesis goes lo
of proport ional i ty
f 6^61 rr6 .

exponent and is always necessar i ly
the contribution of the second term in

zero for large N. Setting the constants
(a and b) in Eq. 11 and rearranging we

ds/2
sN'/N bN@ ( 12 )
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Figure B: Plot of
s.,/ttd, /2 vs . N where
.lrd =1.29 and a=I.184 for
the same data as in
Fig. 3. The slope(giving the exponent co)
is taken from a
straight line drawn at
sma1l N.
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H-"f" a represents the constant S",,/N =' value for large N,which as seen f rom Fiq. '' 4 has the va1u6 ofa=I.18. Therefore, if we plot Eq. 12 directly in logarithmic
form r+e will recover immediately the o exponent. -This is
done in Fig.8 using the same data as in rig. +. we considerthe slope at short times because this is where the
correction term predominates. At the straight line segmentin rig. B the slope is: o=-0.48t0.08. we notice that foicingan exponent ds=4/3 gives a=0.99 and o=-0.47, showing that c.ris not as sensitive to d= ES, obviously, a is.
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3.5. Correlation effects

( 1-dim)

(2-dim)

(3-dim)

+ ( 1-dim)
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correlation in diffusional motion has been shown in the pastto be a necessary idea for the explanation of experimeitatdata ranging from the diffusion of hydrogen in m-etals tlGl
and models of diffusion in concentrated laitice gases trTlto the relaxation mechani.sm of Iow-1ying excited-states of
organic mol-ecures at Iow temperatures [7J as studied by the
use of random walk hopping models t181. By correlation herewe mean the retention of the directionar memory over acertain number of_lattice spacings. This is guantiiatively
described.by the fraction p., which is the probability of aforward jump, and it is ih tfre range t !/a<p, <1.00, ihere ais the lattice coordination number. Recentry' we introduceE
It9,20] a new model that incorporates the effects ofcorrelation in the usual t4l random walk models, first onperfect lattices ItS1, and then on mixed binary lattices
t201. of interest to us here is whether correlat-ed randomwalks behave the same \ray as regular walks and if the
associated properties belong to the same universality class
as the warks of the previous sections. For perfect latticeswe extended Montrol-1's work 121 to include correlated
motion. Thus, the formulae for s* for uncorrerated walk are:

sN = GN/o)l/2

S* = zrNlInN

S*=cN

+

+

+

If we now
generat ing
factor t19l

c
"N (8fN/z)t/2 + (1-f)

include correlation by going through thefunction method and incorporating the corielation
we rederive these formulae as follows:

:'
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rfN
c

N 1n(BfN) + n(f.-7)/2
(1 - pr) fN

+
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a1
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a
a

S
N 1+0.5(f-1) + (1-p +

r

where f is the correlation factor (it is a function of
but has different form for each dimensionality), and p-

the return probability for uncorrelated walk. t,ile see 't
\{e arrive at relatively simp}e modifications as compared
the uncorrelated walk model.

The problem is cons iderably more compl i cated
disordered lattices. Our resulls are given in Fig. 9.
evaluale the spectral dimension d, for correlated walks
several different values of the correlation parameter '

and for several different occupational probabilities p.
curve marked p, =0.25 is the limiting case of no correlat
at all, since Jn the sguare lattice all four directi
carry the same 0.25 probability of scattering. It is a
the same curve as that in Fig. 5.

We focus attention on the other curves in Fig.
which refer ro higher p, (p, 70.25) vaiues. In the frac
limit (p=0.50 ) we see th'at 'd; sharpli, oecreases as
increasls. For p, =0.95 (at p=6.i6; ,oe iei that d:=0.55 on
This sharp decre'ase is a consequence of the fact that at
critical percolation threshold correlatea vaLks have a m'
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value than uncorrelated walks because, ds \ras
shown in the past Itei, the particle indulges for
in revisiting the same rors of sites over and over
also used this idea 17) to interpret experimental

xed naphthalene a11oys at 2 K.
increases, one observes for each p, value the
ing crossover to the classical behavior, since
p=0.80, correlated walks are much more efficient

rrelated ones. The region 0.70<p<0.80, as seen
9, is the "crossover region" betveen the
p, values. At p=1.00 oui calculations are j.n

ag'reement rdith f ormulae 15-18.
in this preliminary study for correlated random

lro types
actal to
rossover
n p. We
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walk motion on fractal structures we investigated t
of crossover that occur, i.e. the crossover from fr
Euclidean behavior for any type of walk, and the c
from uncorrelated to correlated walk at any give
found that correlated random walks do not belong to
universality class as simple walks. We notice that
analytical solutions for the curves of Fig. 9 exi
for p=1.00, but more vork is needed to guanti
explain the behavior of the other curves.
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3.5. Long-range interactions

It has been shown in the past [21] that the static criticalpercolation exponents F, "y, z obey the universality
hypothesis independent of the interaction range, for finite
range cutoffs. It is interesting here to test the same
hypothesis for the dynamic exponents examined here, i.e. the
spectral dimens ion and corresponding crossovers. The
interest stems from the rve11 known experimental observation
that triplet exciton transfer in organic molecules at 1ow
temperatures involves such long-range random hops on
percolation clusters. The critical occupational probability
p. is a function of the interaction range, and it has been
derived for various interaction ranges (R=1-5) by Monte-
Carlo s imulat ion [ 21 ] and by a pos it ion-space
renormaLization group approach L22). Some of these p- values
are: P.=0.5931 (R=1), p"=0,29 (R=2), p"=0.15 (R=3), 'p-=0.10
(R=4J,, p"=0.07 (R=5),- R=0.05 (R=5)l etc. i4e use a'form:
P.r,e-"' for- the stepping probability, where r is the distance,
and a gives the shape of the curve for the distribution of
distances.

The random walk process is monitored here in a Fimilarway as in our previous calcuLations through S., and R'",, with
the _9nly difference- now that long steps are 5l1owed
according ro the P.l,e-d' equation. we f iia a c'omplete analogy
with the nearest neighbor case. Figure I0 is L plot of InS^

o
tf,
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Figure 10: Plot of lnS"
vs. InN for the case
o=0, interaction range
R=2, and four different
p, p=0.32, 0.31, 0.30,
and 0 .29 ( top to
bottom). These are
averages of 1000
realizations on 500x500
latt ices. The random
walks originate on any-
s ize cluster.
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vs. InN, similar to Fig. 1, but for R=2 and we see that it
yields a slope of dr=1.24, same as Eq.;^1. To further
investigate the scaling exponent we plot S*,/N-- vs. N in
Fig. 11 for different values of the parameter o in the
range: 0<a<10.0, for p. =0.29 ( interaction range R=2 ) . We use
d, =1.23, and we see thht f or a=0 (a1l steps;-eguaIIy probable
independent of distance) the quantity S",/N"''' above N=2500
steps is constant in time. But for'' a>0, i.e. hopping
probabilities that decrease with range, w€ see it takes
longer (more steps) to reach the asymptotic limit. This is
expected since it takes, on the average, several noninal
time steps before an occurence of a long-range step.

We note that this model is based on defining and using
a range (distance) dependent transition probability. eg;t the
actuaf form of this dependence (for example, the e-"'used
here) does not enter explicitly in the calgulation. Any
other proper form, sult as for example r-n (n=integer),
could have been used with same results. One need only
establish the proper correspondence. t{e concfude that long
range random walks on percolating clusters behave similarly
to simple random walks, with scaling and universality sti11
intact. But for steeply falling-off step probabilities we
find an asymptotic behavior that is approached more
gradually in time. It would be interesting to check whether
an experimental system (where the cutoff range itself is a
function of time) will also exhibit an effective fractal
dimens ion.

ACKNOWLEDGMENT. Parts of this work were performed vith
K.W.Kehr, A.Keramiotis, and R.Kopelman, whose colfaboration
is greatly appreciated.

APPENDlX

The cluster distribution is performed here using a new
version of the Cluster-Multiple-Labelling-Technigue
(CMLT). The principal idea is the same as in CMLT, i.e. in
cluster coalescence no sites need to be relabelled, and once
a site is labeIled, it retains its original labe1 throughout
the sweep of the lattice. The difference from the original
method l23l is a new index processing used here. Instead
of applying the routine CLASSIFY 1,231 at every site
labelIing in order to determine the proper cluster label of
all neighboring sites we perform a single second sweep of
the lattice that does the same operation. But this way, each
site is checked only once in the second sweep, instead of
twice that routine CLASSIFY does, for the square Lattice
topology, where every site is a neighbor to two different
sites. The algorithm is given below:

l
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Figure 12: Flow chart for the site labelling assignment, for
the first lattice sweep.
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Occupied (open) sites are labe11ed I and empty (closed)
sites are labeIled 0. ALl labell-rng is done column by column
starting at the top of the left-most column. We label each
open site using a one-dimensional array N as follows: If
both sites above and to the left of an open sj.te j are
closed sites, i takes the current index of the array N,
which in the beginning is set equal to 1. If only one of
these sites is open then j takes the current index of the
open site, w_hich, however, may be different from its
original value. If both these sites are open then site j
and the current index of the site situated above it
simultaneously take the current index of the Left site.
This is all carried out in rhe one-dimensional array N,
where the current index k (k=l, 2, 3,..., etc.) of site i is
the index which satisfies the eguation N(k)=k. The value of
the index f or site j that wi.I1 be stored in the array N is
determined as follows: If the original index of site (i-l)
is k, and the current index of site (j-1) is k", then we
set f br s ite j N (k, ) =i9 and N (k, )=k, so that k) iS now the
stored index for' thls site.' Tha flov chait for this
algorithm is given ir;r Figure !.2. I{hen all index assignment
in the lattice is finished we go back for the second sweep
to renumber all open sites vhich do not have the latest
assigned index. We then assign all identical indexes to a
new one-dimensional array Z, where we store the size and
latest index of each cluster.

To make this process better understood we work out an
example of index processing for a 20x20 square lattice as
shovn in Fig. 13. Here the assigned p is p=9.55. In part (a)
\{e have the lattice as it is formed using 0 and 1, for
closed and open sites, respectively. In part (b) we begin by
labelIing the open sites of the first coLumn. Following the
algorithm in Fig. 12 the first open site takes the current
index of the array N (N(1)=1), the second and third open
sites also take the value 1, vhich is the current index of
the site above them. The fourth site takes the current i.ndex
of the array N (N(2)=2), and so on. When ve start 1abel1ing
the second column the first open site takes the current
index of its left site, which is 1, the next open si.te takes
the value 5, while the current index of the array N is
taking the same va1ue. The first site in the third column
takes the value 5. The next one takes the value L, while
N( 5 )=N( 1) . Thus, rihen we label the f ourth column the f i rst
open site takes the value 5 because now the current index
of its left site is 5 (N(5)=f , N(1)=5, N(5)=5). using this
method we finish 1abe11ing all open sites in the
lattice. In part (c), in the second sweep we Iabel'again all
open sites which do not have their latest index. We see
that the percolating cluster has as its.index the value of
50, and is made of 83 lattice sites, the second largest
cluster has a size of 7l and lattice index of 22, and so on.
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