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We predict hierarchies of kinetic regimes and crossover conditions for elementary A + A - 0 and A + B - 
0 batch reactions from a nonclassical reaction4iffusion formalism that includes spatial fluctuations. This 
paper addresses the case of a spatially correlated initial distribution of reactants; random initial conditions have 
been discussed in another paper. The hierarchies of kinetic regimes are even richer than those found for random 
initial conditions, with the particular hierarchy determined by the tightness of the initial correlations. In most 
cases there is one regime (which we call a "burst") where the decay of the densities in the A + B reaction is 
even faster than in the A + A reaction. We confirm our predictions via detailed numerical simulations. 

1. Introduction 

The spontaneous formation of nonuniform spatial structures 
associated with diffusion-limited binary reactions in low dimen- 
sions has been widely studied in the past few years. These 
nonuniform spatial distributions manifest themselves through 
"anomalous" rate laws for the global densities p ( t )  of the reacting 
spe~ies.1-2~ For example, the irreversible reaction A + A - 0 
under "normal" circumstances is described by the rate law i = 
-kp2 whereas the asymptotic rate law for dimensions d < 2 in an 
infinite volume is i = -kp(1+2/4.1v4+21-27 The slowdown implied 
by the larger exponent is a consequence of the deviation of the 
spatial distribution of A's from the Hertz distribution of nearest- 
neighbor distances.28 The Hertz distribution has a maximum at 
zero separation and leads to the normal rate law. The nearest- 
neighbor distribution underlying the anomalous rate law has many 
fewer close reactant pairs.lJ5-27 This nonrandom distribution 
arises from the fact that diffusion is not an effective mixing 
mechanism in low dimensions.29 

The diffusion-limited irreversible reaction A + B - 0 also 
exhibits anomalous kinetics in low dimensions. Under normal 
circumstances the rate laws for the global densities PA and p~ are 

densities of the two species are equal at all times and we can 
dispense with the subscripts so that once again p = -kp2. The 
actual asymptotic rate law in an infinite volume in dimensions 
d < 4 for an initially random distribution of reactants is instead 

= -kp(1+4/4. In this system the principal causeof theanomalous 
behavior is the formation of aggregates of like particles.1-20 The 
spatial regions in which the density of one type of particle is 
overwhelmingly greater than that of the other grow in time (while 
the total density within each aggregate of course decreases with 
time). Since the reaction can essentially only occur at the 
interfaces between aggregates, and since the number of these 
interfaces decreases with time, the reaction slows down relative 
to the rate that would describe a random mixture of reactants. 
Again, this behavior reflects the fact that diffusion is not an 
effective mixing mechanism in low dimensions. Initial spatial 
fluctuations in relative densities can thus grow in size as the 
reaction that eliminates close opposite pairs proceeds. 

PA = p~ - k p o B .  If p ~ ( t = O )  = pB(t=O) I p(t=o) ,  then the 
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This evolution of the A + B - 0 reaction is predicated on the 
presence of initial spatial fluctuations in the reactant densities. 
Indeed, the specific rate law i = - k ~ ( ' + ~ / @  depends on an initial 
distribution of reactants that is completely random. The situation 
changes with a different initial particle distribution, although 
anomalies will in any case be associated with initial fluctuations. 
Such fluctuations, even if different from those associated with a 
completely random distribution, will tend to grow (at least initially) 
but may lead to an asymptotic exponent different from ( 1  + 
(4/d)), and the critical dimension for anomalous behavior may 
in general differ from d = 4. 

In this paper we outline the various regimes of kinetic behavior 
of the densities of reactants for the reaction A + B - 0 from the 
initial time until the asymptotic behavior is reached when initially 
correlated A-B pairs are randomly placed in the system.30 The 
corresponding analysis for a random initial distribution of 
reactants has been presented el~ewhere.3~ We characterize the 
various kinetic regimes and estimate the crossover times from 
one regime to another. Initial pair correlations clearly limit the 
initial (and hence subsequent) fluctuations in the particle numbers 
and hence they affect the rate laws. We present numerical 
simulation results in one dimension and analyze these results in 
terms of our model. Our analysis also offers insight into the 
behavior of the A + A - 0 reaction. Most of the details omitted 
from this presentation are included in a review presented 
e l~ewhere .~~ 

Much of our analysis is based on the reaction4iffusion model 
for the local densities pA(r,t) and p~(r,t):4~193~ 

and similarly for pB(r,t), where kl is the time-independent local 
rate coefficient and D is the diffusion coefficient for both species. 
It turns out to be convenient to deal instead with the difference 
and sum ~ a r i a b l e s ~ . ~ ~ J z  y(r,t) = '/Z[pA(r,t) - p&,r)] and p(r,r) 

I/Z[pA(r,t) + p~(r,t)]. The difference variable satisfies the 
linear diffusion equation i(r,t)  = DVy(r , t )  which can of course 
be solved exactly. The sum variable satisfies the equation obtained 
by summing (1) and its partner for p ~ :  

i(r,t) = Dv2p(r,t) - kl[p2(r,t) - r2(r,t)I (2) 

This equation is moredifficult to deal with and can only be handled 
approximately. 
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In section 2 we specify in detail the initial conditions to be 
considered in this paper and consider the behavior of the difference 
variable for these initial conditions. Section 3 describes our 
simulation methods. Section 4 summarizes our results for random 
initial conditions.31 Section 5 deals with the sumvariable equation 
for the correlated initial distribution of reactants, the kinetic 
regimes that might be observed as the densities decay from their 
initial distributions, and the crossover times from one kinetic 
behavior to another. We also present simulation results and 
analyze them in terms of our theoretical predictions. Section 6 
presents our conclusions and a brief overall summary of our results. 

Lindenberg et al. 

2. Initial Conditions and Difference Equation 
We deal with the situation in which Nmolecules of type A and 

Nmolecules of type B are initially placed in the system at locations 
{r;) and (r;) withj = 1, ..., N ,  respectively. Here we consider the 
case of A-B pairs that are deposited at random locations, but in 
such a way that the members of each pair are constrained to be 
a distance c apart.30 Different A-B pairs may interpenetrate. 
The initial distribution can then be written as a product of pair 
distributionsp(r,?,ry),j = 1, ..., N ,  where the probability density 
for each A-B pair is 

(3) p(rA,rB) = -JdQ W / 2 )  6(rB - rA - c) 
2 v?rd/2 

Here c is a vector of length c and random orientation and the 
integration is over these orientations, and r(x) is the gamma 
function. 

The difference variable satisfies the linear diffusion equation, 
which can besolved e ~ a c t l y . ~ ~ . ~ ~  Thequantity of interest involving 
the difference variable is its mean square value (y2(r,t)) (see 
below), where the brackets indicate an average over the initial 
distribution of reactants. One easily finds33 

( r2(r,t)) = Qt4l2( 1 - e4/gDf) - Q-r C‘ -V+2)/2 (4) 8 0  

where the last expression is valid for times t >> c2/8D and where 

Our Monte Carlo simulations are performed on discrete lattices. 
The lattice sites are separated by lattice constant a, and the total 
number of lattice sites is L, so that V = Lad. In the continuum 
limit u - 0 and L- m such that Vremains finite. The continuum 
densities p ( r , t )  and r(r,t) have units of number per unit volume, 
while in our simulations we deal with densities in units of number 
per lattice site. Denoting the lattice densities by plat(l,t) where 
the index llabels the lattice sites, we have the relation p - platlad. 
The maximum value of plat when multiple occupancy of a site is 
not allowed is thus unity. In order to simplify notation in our 
discussion of simulation results in subsequent sections, we will in 
general omit the superscript “lat” even when dealing with lattice 
densities since the usage will be clear from the context. 

The diffusion coefficient D in the discretized problem has the 
value D = (thedistance scaleimplicit in thediffusion coefficient 
is thus different in different dimensions). The correlation distance 
is discretized by writing c = Xu, where X is the number of lattice 
constants that separates a correlated pair. 

3. Method of Simulations 
The simulations are performed using the conventional tech- 

niques described in our earlier paper~.I5,3~,35 In this paper we 
restrict our simulations to one dimension. Briefly, lattices of 
sizes up to 106 sites are generated. We do not allow multiple 
occupancy of sites. The A-B correlated pairs are placed on the 
lattice so that the A particle and B particle of each pair are placed 
exactly X sites apart. This is accomplished by first positioning 
the A particle on a random site on the lattice provided it is 

Q E p o / 2 ( 8 ~ D ) ~ l ~ .  

classical depletion zone Zeldovich finite system size 
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Figure 1. Possible time progressions of kinetic behaviors for a random 
initial condition: (a) d 52; (b) d = 3. 

unoccupied. Then its B partner is placed in one of the two possible 
sites which is exactly X sites away from the A. The choice is 
again made at random. If the chosen site happens to be occupied 
by another particle, then the other choice is tested. If both sites 
at a distance X sites away are occupied, then the pair is totally 
removed from the system and a new effort is initiated to position 
the pair somewhereelseon thelattice. Cyclicboundaryconditions 
are used, so that it is possible for an A-B pair to be split at the 
ends of the lattice. The reaction process proceeds in the usual 
way: The particles diffuse on the lattice by performing inde- 
pendent random walks to nearest-neighbor sites (thus carrying 
no further memory of their counterpart). Two A’s or two B’s are 
not allowed to occupy the same site. If an A and a B step onto 
the same site they react, which means that they are removed 
from the system. Cyclic boundary conditions are employed for 
the random walk as well. We monitor the particle density as a 
function of time for times ranging up to 108 steps. 

4. Kinetic Behavior for Random Initial Conditions 

The kinetic behaviors that arise in the A + B - 0 reaction with 
correlated initial conditions are particularly interesting when 
compared to the behavior of the same reaction with random initial 
conditions. Here we summarize the results obtained elscwhere3lJ3 
for the average density ( p ( r , t ) )  of either species for the case of 
random initial conditions. 

we introduced the following terminol- 
ogy: By classical behavior we mean the decay appropriate to the 
classical rate law b = -kp2, that is, (p(r,t)) = po/(l + kpot). The 
terminology depletion zone behavior denotes the nonclassical 
behavior exhibited, for example, in an A + A - 0 or an A + A - A reaction because of the ‘depletion zonen that forms around 
each surviving reactant after the initially very close pairs have 
quickly reacted. It is characterized by the decay law (p(r,t)) - 
td/2 for d I 2 and (p(r,t)) - t-’ ford > 2,15J9J1 with logarithmic 
corrections when d = 2.1sJc37 In the Zeldovich or segregation 
regime the segregation of species dominates the kinetic behavior 
embodied in the well-known ( p ( r , t ) )  - t 4 4  behavior for d I 4 
(again with possible logarithmic corrections when d = 4) and 
classical behavior for d > 4.1-5J5J6 Finally, in thefinite system 
size regime the decay of the average density is exponential in 
time. 

A possible kinetic progression for random initial conditions is 
shown in Figure 1 for one dimension. At early times the A + B - 0 reaction behaves the same as the A + A - 0 reaction. Both 
exhibit classical behavior at very early times but quickly cross 
over to the depletion zone behavior. Wedo not providean estimate 
for the crossover time to but simulations indicate that it is extremely 
short (on the order of a few stepping times). The depletion zone 
behavior continues until the average density is of order ps - fdpo, 

In our earlier 
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where fd is a dimension-dependent fraction. Our simulations 
lead to the valuesfd N 0.3-0.5 in one dimension, andfd N 0.03 
in two dimensions. The time rs at which the average density has 
the value ps is of order 

( 5 )  

After the time tl, segregation effects begin in the A + B reaction 
and the Zeldovich regime sets in. This behavior continues until 
a time tf at which finite system size effects are felt. Finite size 
effects begin when the average linear size of each kind of aggregate 
(which grows in time as t112) is within an order of magnitude of 
the size of the system. In one dimension our simulations lead to 
tf/LZ - 2 X 10-3  for all values of L simulated. In two dimensions 
we find tf/LZ N 4 X 10-2. In this progression we have assumed 
that finite size effects set in long after the onset of the Zeldovich 
regime, that is, tr >> t,. This need of course not be the case: as 
the system size decreases t f  sets in earlier and earlier. 

5. Kinetic Behavior for Correlated Initial Conditions 
Our analysis is based primarily on the ensemble average of (2) 

over the initial distribution of reactants: 

Note that the squared difference variable ( y2(r,t)) appears as a 
source term in the reaction4iffusion equation: the fluctuations 
in the difference variable thus drive the dynamics of the system. 
For random initial conditions (y2(r,t)) = Qr'IZ. Comparison 
with (4) confirms that random initial conditions allow for greater 
fluctuations in the difference variable than do correlated initial 
conditions. This difference lies at the root of the differences in 
the dynamical behavior of the systems with different initial 
conditions. 

The continuum limit places constraints on parameter values 
and variables-if these constraints are not met, a continuum 
approach makes no sense. One of these constraints is that the 
correlation distance c must be sufficiently large for there to be 
many particles between each correlated pair; i.e., we must have 
(p(r,t))cd >> 1. This condition can at best hold only up to some 
time t-once (p(r,t)) becomes sufficiently small the condition is 
necessarily violated. Nevertheless, we can still argue heuristically 
about some features of the behavior of the system even at very 
low densities. 

To proceed from this point one must find a way to deal with 
the quantity (p2(r,t)) and, in particular, with its relation to 
(p(r,t)). Rather than attempting to construct a hierarchy of 
ever higher powers involving p and y, we proceed along the 
following lines. 

First, we calculate (p2(r,0)) exactly. Assuming that at most 
one molecule can be placed at each lattice site we 0bta in~l9~~ 

Here we have dropped terms of O(N/vZ). The quantity pmx 
I/zd is the highest possible density of each reactant in the 
simulations with which our results will subsequently be compared. 
In a continuum model a - 0 and pmx - m. However, we retain 
pmlx as a finite quantity to represent the effect of the finite size 
of the A and B molecules and the resultant excluded volume 
effect. Note that the first term on the right-hand side of (7) is 
at most equal to the second. 

Our analysis of the random initial condition case3' was based 
on the appearance of a number of length scales whose interplay 
determines the way in which the system evolves: the distance 
between nearest neighboring particles, the linear size of an 
aggregate of like particles, and the size of the system. In the 

current analysis a fourth length scale occurs, namely, the distance 
c initially separating a correlated A-B pair. This additional length 
leads to a rich variety of new behavior determined by its size 
relative to that of the other scales. 

The entire crux of non-classical reaction kinetics is the departure 
of (p2(r,t)) from the relation (7). To characterize this departure 
we write3l 

(p2(r,t)) = . ~ l ( p ( r , t ) ) ~  + ppmax(p(r,t)) (8) 

which constitutes a definition of 7 and p. We argue below that 
the variation of p between 1 and 0 (and, less importantly, that 
of 9 between 1 and 1/2) captures all the important kinetic regimes 
of the A + B - 0 reaction. 

5.1. Kinetic Regimes. We begin our analysis by assuming 
that the continuum condition holds at least initially, that is, p d  
>> 1, and will later comment of the behavior of the system when 
this is not the case. 

The first kinetic regime occurs at t = 0. The analysis of this 
regime parallels that of the random initial condition3' since at 
very early times reacting pairs of particles are not correlated 
pairs-the latter are still too far apart. Instead, reactions involve 
uncorrelated partners coming from different correlated pairs and 
the dynamics is therefore indistinguishable from the random initial 
condition. Thus, as in the random case we first note in eq 6 that 
the diffusion term vanishes at t = 0 since (p(r,O)) = po is 
independent of r. The average (p2(r,O)) is given in (7). Clearly, 
(4) is inappropriate for the evaluation of the initial mean square 
difference variable [the difficulty arises from the limits that have 
been taken in evaluating (4)]. Direct evaluation gives instead31333 

(r2(r ,o))  = pmax(p(r,O)) = PmaxPO (9) 

[the infinity in (4) as t - 0 arises from the fact that in the strict 
continuum limit pman - a]. Thus, eqs 7 and 9 in ( 6 )  at t = 0 
yield 

(i(r,t))If=o = -kl(p(r,0))2 (10) 

the classical rate equation for a bimolecular reaction. Thus, 
very near t = 0 we have (p(r,t)) = po/(l + kpot). 

Note that at t = 0 the average of the product (PUB) separates 
exactly into the product of the averages, (pA(r,O)pB(r,O)) = 
(pA(r,O)) (pB(r,O)). The analysis that leads to classical behavior 
at very early times is unstable to any fluctuations that lead to a 
deviation from this strict equality. These fluctuations are of course 
embodied in ( y2(r,t)). Thus, as soon as these fluctuations destroy 
theequalityso that (pA(r,t)pB(r,t)) # (pA(r,t)) (pB(r,t) ), another 
kinetic behavior determined by the associated nonrandom 
distribution necessarily sets in. Contiguous pairs of A and B 
molecules will react quickly, and unless diffusion can just as 
quickly replenish such pairs, there will be deviations from a random 
distribution as reflected in the inequality. 

Since (4) is an exact result, deviations from the initial random 
distribution of correlated pairs are already built into it. In (8) 
deviations from randomness appear in the deviation of p and 9 
from unity. However, as long as p is still of O( l),  the second term 
on the right-hand side of (8) dominates the first. 

In order to balance contributions of various t e r m  in (6 )  so as 
to establish the time dependence of (p(r,t)) in the time regime 
where the distribution of reactants may no longer be strictly 
random but p is still of 0(1), we explicitly substitute (4) and (8) 
into (6) :  

(i(r,t)) = o v 2 ( p ( r , t ) )  - kl[a(p(r,t))' + pPmax(P(r,t)) - 
~ t ~ / ~ ( i  - (1 1) 

The dominant balances depend not only on 7 and p but also on 
the relative importance of the exponential contribution to the last 
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term. This contribution is the sole consequence of the correlated 
initial conditions. The exponential becomes important at times 
t - t,, where tc is proportional to the time that it takes on the 
average for a particle to cover a distance c, 

t, = c2/8D (12) 

At times greater than tc correlated particles have had an 
opportunity to meet one another; at times prior to tc correlated 
particles “do not know” of one another’s existence and the system 
should therefore behave as with a random initial condition. This 
is indeed the case; the differences between the random and 
correlated systems only set in beyond time t, and the entire further 
analysis depends on where this time falls in relation to the other 
characteristic times of the system. This is another way of saying 
that the subsequent behavior depends on the relation of the length 
scale c to theother characteristiclength scales introduced earlier. 

If tc is much greater than the (extremely short) time to, then 
the transition from classical to A + A depletion zone behavior 
will again occur at time to (as in the random initial condition 
problem). Beyond this time, the dominant time dependence of 
( p ( r , t ) )  for d = 1 must be of the form 

(p(r,t)) - (13) 
Ppmax 

The largest terms in (1 1) then balance each other. For d 1 2 the 
dominant balance is established with the leading behavior (with 
perhaps logarithmic corrections in time in two dimensions) 
(p(r,t)) - t-1. When d = 2 the dominant balance involves the 
diffusion term, the term linear in the density, and the Q term in 
(1 1). In dimensions d 2 3 the Q term becomes unimportant. 

In this “intermediate” time regime we thus find that the main 
time dependence of the mean density goes as ( p ( r , t ) )  - r’/2 for 
d I 2 and as t 1  ford > 2, exactly as in the case of random initial 
conditions. This behavior is nonclassical in one dimension and 
is completely analogous to the nonclassical regime of the A + A - 0 and A + A - A reactions.15J9~~~ 

The subsequent behavior of the system depends on the relative 
magnitudes of the time t, introduced in (5) and the time tc. Recall 
that the time t, marks the beginning of the aggregation process 
in the random initial condition case and the consequent slowing 
down of the reaction. If t ,  is smaller than tc then the evolution 
of the correlated system continues as that of the random system 
and segregation begins to set in before the correlation length is 
felt by associated partners. If, on the other hand, t, >> tc then 
the correlation effects are felt before segregation sets in, 
segregation does not occur, and the behavior is quite different. 
We discuss these two cases separately. 

5.1.1. Dynamics with Segregation. Consider first the case ts 
<< tc. With the explicit expressions (5) and (12) this condition 
can be translated to the statement 

In one dimension our simulation results led to fd - 0.3 - 
so that (14) requires that cpo >> 6: if this condition is satisfied, 
then segregation sets in at time t, as in the random initial condition 
case. In two dimensions we foundfd - 0.0331 so that segregation 
sets in at time t, provided that c*po >> 350. Note that with 
condition (14) both in one and two dimensions the density of the 
system at time t, still satisfies the condition for the continuum 
approximation to be applicable, that is, cdp, - cdfdpo >> 1. This 
is as it should be, since true segregation implies the existence of 
many particles separating correlated partners. 

Our analysis captures the behavior of the system in the 
segregation regime if we set p = O ( ( p ) / p m X )  and v = 1 / ~  in (8). 
The choice 7 = 1/2  implies a complete segregation of species, Le., 
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that (pa(r,t)p&,t)) = 0. This choice is not crucial to the term 
balancing arguments. More important is the choice of p. One 
might be tempted to assume that the behavior is mainly due 
to the macroscopic segregation and that the spatial distribution 
of molecules within each aggregate is of lesser importance. This 
is not the case: indeed, were we to assume an essentially random 
distribution within each aggregate we would set )L = 1 and we 
would be back to the previous analysis, with the result that 
( p ( r , t ) )  - for d 5 2 .  In reality the formationof macroscopic 
aggregates is accompanied by a nonrandom (clumped up) 
distribution within each aggregate.l5**6 Hence the choice << 
1. We will see that setting p = O( ( p ) / p - )  captures the proper 
behavior. Thus in this regime in place of eq 11 we now analyze 
the balances implicit in 

(d r , t ) )  = D v Z ( p ( r , t ) )  - kl[dp(r, t))Z - Qt4/’1 (15) 

where (Y = O(1). 

brackets, whence 
Ford I 4 the dominant balance must occur inside the square 

( p ( r , t ) )  - (Q14’/zt4/4 (16) 

For d > 4 a balance occurs if ( p ( r , t ) )  - t1 (classical behavior). 
Segregation continues until time t, is reached: at this time the 

exponential contribution to the last term in I l l )  becomes 
important and the balance of terms changes. Note that the 
average density pc at this time is still sufficiently high for the 
continuum approximation to be valid (as expected): an estimate 
of pc can be obtained from the relation pc - (rc/ts)4/4ps which 
leads to the expression cdpc - (cdp0)11z/.d/4. With Cdpo >> 1 we 
then satisfy the continuum condition for cdp, as well. 

At and beyond times t - t, the exponent in eq 11 can be 
expanded and (1 1) can be rewritten as 

( k t ) )  = D v Z ( p ( r , t ) )  - k l [ ~ ( p ( r J ) ) ~  + PPmay.(P(r,l)) - 

At time t, the system is still segregated; since in general the size 
of an aggregate at time t is of the order of the region covered by 
a random walker in time t (at least in dimensions d I 2, where 
random walks are compact), the average linear dimension of the 
aggregates oflike particles at time t,is -c, thecorrelation distance 
of initially correlated pairs. The coefficient 9 in (17) is of O( 1) 
while p - O(O), and the dominant balance then immediately 
leads to 

The decay of the density in (1 8) is not only faster than that of 
the segregation regime but, for d I 2, indeed even faster than in 
the A + A depletion zone regime! This behavior comes about 
because the correlated initial condition places a limit of order c 
on the size of a segregated aggregatethe segregation pattern 
cannot continue beyond that. The initial correlations suppress 
fluctuations in relative densities of A and B particles that would 
be necessary for the growth of the segregation pattern to continue. 
Indeed, as time increases beyond t, and the overall density of 
particles continues to decrease due to the reaction, so does the 
number of like particles in an aggregate relative to the total number 
of particles. As a consequence, the relative number of A-B 
interfaces at which the reaction can take place thus increases. 
This “shrinkage” of aggregates leads to the rapid decay in 

Eventually a configuration is reached where each A particle 
is essentially surrounded by Bs and vice versa; the aggregates 
have now “shrunk” to single particles. This occurs at a time that 
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Figure 2. Possible time progressions of kinetic behaviors for a correlated 
initial condition when the initial particle density is sufficiently high for 
there to be a segregation regime: (a) d I 2; (b) d = 3. 

we call t ,  (the subscript stands for "end of shrinkage") at an 
average density padetermined from the fact that the only surviving 
particles in the aggregates of size c are those in the center of the 
aggregates, that is, such that 

These surviving particles are at a distance of order c apart. It is 
important to note that in general A-B pairs that are now a distance 
c apart are not originally correlated partners since chances are 
that the correlation partner of any given particle has already 
reacted. Thus, although the configuration at this point is reflective 
of and due to the original correlations, it reflects these original 
correlations in a somewhat indirect way. The time ta can be 
estimated from the relation pa - (tc/t,)-(d+2)lZpc, which leads 
to 

Note that the times t ,  and te become ever closer with decreasing 
c and decreasing PO. Therefore, to clearly see the aggregate 
shrinkage regime we should deal with large values of c (for given 
PO). This in turn requires that the simulation be carried out to 
very long times. 

At time ta the condition (19) indicates that the continuum 
approximation has ceased to be valid, so that further arguments 
must be heuristic. A-B pairs are now narrowly distributed around 
a distance c, so after a time that is narrowly distributed around 
--c2/2D they will meet and react. Until this happens, the density 
does not change much. Thus at a time of order 

t,, - t ,  + c2/2D - t ,  + t ,  

we expect a sharp increase in the reaction rate. We call this a 
"slow burst" (hence the subscript sb; see below for further 
discussion of bursts and slow bursts). Following the slow burst, 
the system returns to the uncorrelated depletion zone A + A 
behavior ( t d / 2 )  at a time tr, a behavior that may be overshadowed 
by the onset at tf of finite system size effects. Finite size effects 
lead to exponential decay of the density when ( p )  - l/Ld, that 
is, when the average distance between particles is of the order of 
the size of the system. 

Figure 2 summarizes the progression of kinetic behaviors 
discussed above. 

5.1.2. Dynamics without Segregation. Next consider the 
situation where the correlation distance is sufficiently short that 
correlation effects set in before segregation can occur, that is, t ,  
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Figure 3. ( p ) - l  -PO-] vs t in one dimension with a fairly tightly correlated 
initial condition for the initial density po = 0.2. The evolution for the 
two reactions is very similar. 

< t,. In this case even if &PO > 1 initially, P(p(r , t ) )  becomes 
of O( 1) at time re while the system is still in the A + A depletion 
regime or perhaps even in the classical behavior mode. Our 
arguments in this regime are therefore necessarily heuristic since 
the continuum approximation is no longer valid. Note that in 
this case there should be no distinction between the A + B and 
A + A problems over the entire time regime; that is, initially 
tightly correlated A + A's should evolve in exactly the same way 
as initially tightly correlated A + B's. Indeed, Figure 3 is a 
typical simulation in this regime that shows the reactant density 
for both reactions. In this particular one-dimensional simulation 
cpo = 2. As we will see below, when the initial pairs are even 
more tightly correlated, the two reactions evolveeven more equally. 

It is easier to discuss first the very low initial density case, Ppo 
< 1. An important behavior-determining feature then is the fact 
that with the exception of a few uncorrelated pairs that were 
initially closer than distance c and that may therefore react before 
time t,, originally correlated pairs are now able to react because 
they have an opportunity to encounter one another before either 
partner has reacted with another molecule. This fact, coupled 
with the fact that correlated pairs started out at exactly a distance 
c apart, means that at times very narrowly distributed around tc 
many pairs suddenly encounter one another and the reaction rate 
suddenly experiences a sharp (short-lived) burst. We thus expect 
the density to experience a sharp decrease at times t - ts. Note 
that this burst due to the reaction of correlated partners is not 
observed in the high-initial-density case, but that a remnant of 
this effect is observed (the 'slow burst"). Once the burst is over 
because most of the initially correlated pairs have reacted with 
one another (time t r ) ,  the situation reverts back to that of the 
uncorrelated A + A problem since each remaining particle is 
essentially surrounded by uncorrelated particles of the opposite 
kind. The system thus never reaches the Zeldovich regime, and 
the asymptotic behavior for an infinite system is (d 5 2) and 
t1 (d 1 3). The return to the depletion zone behavior may again 
be overshadowed by finite size effects. 

Next consider the case Ppo > 1 (but &PO not sufficiently large 
for segregation to occur). In this case there is still a burst that 
sets in at around tc, albeit a slow one (reflective of the initial 
interpenetration of correlated pairs). This slow burst is consis- 
tently observed for both A + A - and A + 3 - reactions. 

Figure 4 summarizes the progression of kinetic behaviors 
discussed above. 

5.2. ComparisonwithMonteCarloSiuLtiona Figure 5 shows 
the Monte Carlo simulation results for one-dimensional lattices 
of one million sites with cyclic boundary conditions for various 
correlated initial conditions. The initial density in all cases is 0.2 
particles of each species per lattice site. The discrete correlation 
distance X is indicated on each curve. The Yandom" curve 
corresponds to the random initial condition. 
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Now consider the X = 10 000 curve in Figure 5a, for which POX 
= 2000 >> 6. The expected kinetic progression for this case is 
as shown in Figure 2a. The time t ,  should occur in the same 
region as for the random initial condition since t ,  is independent 
of the correlation distance. Earlier we found that, for po = 0.2, 
t ,  - 102. The independence oft, from X is indeed observed in 
Figure Sa-the two curves are superimposed for times that are 
much longer than ts. The faster decay of the h = 10 000 density 
is expected to set in at about t ,  = S / 8 D  = 2.5 X 107, consistent 
with the behavior observed in the figure. Indeed, we find that 
in the range 2 X lo7 to lo8 the average slope of the curve is 0.77, 
that is, close to the predicted 3/4. The reactant density predicted 
from eq 20 at t ,  is pc - 3 X 10-3, which is consistent with the 
density obtained from Figure 5a at t,. The crossover time into 
the slow burst regime, tsb, is predicted to occur at about lo8, that 
is, an order of magnitude greater than tc. This is beyond our time 
scale. However, we do see the beginning of a sharp increase in 
the reaction rate, perhaps indicative of the expected slow burst. 

Next consider the X = 1000 curve in Figure 5b. Now POX = 
200 >> 6, so the expected kinetic progression is again as shown 
in Figure 2a. The time t8 - lo2 is still well within the regime 
where the X = 1000 curve is essentially the same as the random 
initial condition curve. The faster decay of the density when X 
= 1000 is expected to set in at t ,  = X2/8D = 2.5 X 105, which 
is consistent with the behavior observed in the figure. The reactant 
density predicted at this onset is pc - 10-2, which is again consistent 
with the density obtained from the figure at tc. The crossover 
into the slow burst regime is predicted to occur at tsb - lo6, only 
a factor of 5 above t,. This range is too narrow to extract a 
reliable slope in this range, even though the curve does go through 
a slope Of  314 within the range. A sharp increase beyond the slope 
of 3/4 is clearly observed in the last decade of the simulation, 
indicative of the slow burst. 

For the X = 100 case, with POX = 20, we are still in the kinetic 
progression of Figure 2a, but some of the kinetic regimes become 
extremely narrow. The curve hugs the random curve beyond 
time t ,  - lo2 and into the Zeldovich regime, but the time tc = 
2.5 X 103 is only about an order of magnitude beyond t,. Therefore 
the slope is never achieved; instead, the lowest observed slope 
is l /3 .  The time tsb in turn is only about twice t,. Therefore, the 
slow burst starts almost immediately beyond t,. Each simulation 
for X = 100 is ended when only about one particle of each type 
remains. 

When X = 10 we have the situation with the kinetic progression 
shown in Figure 4a (with a slow burst). This is the same curve 
as the A + B curve in Figure 3. Here the progression goes directly 
from the t l 1 2  behavior to the slow burst regime. Again, 
simulations were ended when only about one particleof each type 
remains. 

Note that a return from the slow burst to an uncorrelated A 
+ A behavior is not observed in any of the cases shown in Figure 
5b. Presumably finite system size effects obfuscate this regime. 

In Figure 6 we consider a number of one-dimensional cases 
that fall within the parameter regimes of “dynamics without 
segregation”, that is, appropriate to the kinetic regimes shown in 
Figure 4a, both with Xpo < 1 and with Xpo > 1. The solid curves 
are the A + B simulations. As a baseline for comparison we 
include the curve for a random initial distribution of reactants. 
This is the same as the po = 0.002 curve in Figure 4 of ref 31. 
We see that almost the entire random curve lies in the A + A 
depletion zone regime (t1/2), and only in the last time decade in 
Figure 6 is there a beginning of the crossover into the Zeldovich 
regime. The time t ,  is about lo6. The dashed line in the figure 
is the result of A + A - 0 simulations with po = 0.002 and 
random initial condition. The A + A and A + B curves are 
clearly similar until the crossover of the A + B curve begins. The 
long-time slope of the dashed line is 0.56. 

c l a s s i c a l  d e p l e t i o n  I dep le t ion  f i n i t e  
zone b u r s t  zone system 

s low i f  cdp,>l s i z e  
f a s t  i f  cdp,<l 

c l a s s i c a l  I c l a s s i c a l  f i n i t e  
b u r s t  system 

s low i f  c>,>I s i z e  
f a s t  i f  c p.<l 

Figure 4. Possible progressions of kinetic behaviors for a correlated initial 
condition when the initial particle density is not sufficiently high for 
there to be a segregation regime: (a) d I 2; (b) d = 3. 
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Figure 5. ( p ) - l -  p0-l vs t for one-dimensional lattices of one million sites 
with various correlation lengths X as indicated in the figures. The initial 
density of each species in all cases is po = 0.2. Parts a and b differ in 
the time length of the simulations. The urandom” curves in both are for 
a random initial condition. 

The behavior of the “random” curve was discussed in detail in 
ref 3 1. In particular, we pointed out that the initial slope of this 
curve overlaps that of a direct A + A simulation; that is, it is 
initially classical (slope 1) but very quickly crosses over to the 
t 1 / 2  behavior characteristic of the depletion zone regime. We 
find that the “average slope” over the first 10 steps is 0.55. At 
very long times the Zeldovich behavior becomes apparent: the 
last decade of the simulation leads to an average slope of 0.249. 
The crossover time from the depletion zone behavior to the 
Zeldovich behavior is found to be t 2  - 102. Finite lattice size 
effects are not yet apparent over the time scales shown. 
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Figure 6. (p)-l - PO-' vs t for one-dimerisional lattices of one million sites with various correlation lengths X as indicated. The initial density of each 
sp i e s  in all cases is PO = 0.002. The solid curves are for the A + B - 0 simulations. The dashed curve is for simulations of the reaction A + A - 0 with random initial conditions. The symbols are for A + A simulations with X = 10 (diamonds), h = 100 (pluses), and X = IO00 (squares). 

Let us now discuss the finite X cases, starting with the smallest 
value of A. The solid curve is the A + B simulation and the 
diamonds are the results of A + A - 0 simulations. As stated 
in our earlier discussion in the context of dynamics without 
segregation, we expect (and indeed see) essentially identical 
behavior of the two in this tightly correlated situation. Since POX 
= 0.02 << 1, we expect to be squarely within the "fast burst" 
kinetic progression of Figure 4a. Indeed, at early times the X = 
10 curve hugs the random initial condition curve. The time tc = 
25 is within the range of the observed fairly sharp burst. Once 
the burst is over, the curve reverts to the expected r1I2 behavior: 
the observed slope is 0.52. Finite system size effects are not 
reached within this simulation. 

When X = 100 we are still in the "fast burst" regime of Figure 
4a since POX = 0.2 < 1. The solid curve for the A + B simulation 
and the +'s for the A + A simulation are almost the same (the 
initial correlations are of course not as tight as for X = 10). The 
curve again hugs the random initial condition curve, and the 
burst crossover time is expected at about te = 2500. This is again 
well within the crossover region. Beyond the burst the slope 
again reverts to the expected 

When X = 1000 we have POX = 2, that is, we now expect a slow 
burst rather than a fast burst. Note that POX has the same value 
as for the curves in Figure 3. The solid curve is the A + B curve, 
the squares are the simulations for A + A with A = 1000, and 
recall that the dashed curve is for A + A - 0 with random initial 
conditions. The three curves are obviously very close. The slow 
burst is expected to begin at -2.5 X 105, and the A + B curve 
may show an early indication of this effect. 

Next we consider Figure 7, where we show the curves for the 
A + B reaction in one dimension with X = 10 for various initial 
densities. The po = 0.002 curve is the same as the A = 10 curve 
in Figure 6, and the po = 0.2 curve is the same as the X = 10 curve 
in Figure 5b. Figure 7 illustrates the transition from the kinetic 
progression involving a fast burst to one involving a slow burst 
in Figure 4a. The most notable observation is the fact that the 
density  curve^ cross; that is, at long times a system with an initially 
higher density has fewer particles left than one with an initial 
density 10 or even 100 times lower! These crossings must be a 

(the actual value is 0.53). 

1 1  
- - -  
* P o  

consequence of the different particle distributions in the different 
cases, leading to a rate that is not just dependent on the value 
of the global density. For the po = 0.02 and the PO = 0.002 curves 
the long time slopes are '/2 and the interparticledistributions are 
thosecharacteristicof the A + A depletion zone, that is, a skewed 
exponential.lJ5.27 For the po = 0.2 curve we do not know the 
particle distribution, but it clearly must be different. 

Figure 8 is similar to Figure 7 but now A = 100. The crossover 
t ,  is expected at 2.5 X 103. The po = 0.02 curve (pox = 0.2 < 
1) shows a fast burst in that regime, and the 0.2 and 0.4 curves 
(POX = 20 and 40) exhibit slow bursts starting about then (note 
that the 0.2 curve is the same as the X = 100 curve in Figure Sb). 
The po = 0.02 curve (which, with p0X = 2, is in the slow burst 
regime) marks the transition between the fast burst and slow 
burst behavior. Note that both the 0.02 and 0.002 curves have 
slopes of about 1/2 before as well as after the burst. Thus, this 
figure clearly illustrates the change in behavior from the slow 
burst that follows the aggregate shrinkage (Figure h) through 
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Figure 8. ( p ) - l -  p0-l vs t for different initial densities. In all cases A-B 
pairs are initially placed X = 100 sites apart. 

the slow burst in the absence of segregation to the fast burst 
(Figure 4a) as POX decreases. For fixed X we expect the onset 
of these various bursts to occur at about the same time, t N t, 
= X2/8D, as indeed they do in Figure 8 at around t - 2.5 X 103. 

6. Discussion 

In this section we summarize the highlights of our findings, 
following the kinetic progressions shown in Figures 2 and 4. 

In all cases, as in the random case,3I at early times the A + 
B reaction behaves in the same way as the A + A reaction. At 
some point deviations from this behavior begin, and the different 
progressions differ in the time and nature of these deviations. 
The differences are mainly determined by the relative magnitudes 
of the characteristic times 1, and t, = X2/8D. If t, < t, then as 
in the random case segregation begins around time t,, while if t, 
< t, there is no segregation regime. In the latter case the A + 
B - 0 reaction behaves in the same way as the A + A - 0 
reaction for a given po and X throughout the entire kinetic 
progression. Thus our work has not only elucidated the behavior 
of the A + B reaction with correlated initial conditions but also 
that of the A + A reaction with correlated initial conditions, 
which to the best of our knowledge has not previously been done. 

Let us begin with the case t, > t,, that is, when there is no 
segregation. In particular, we begin with the most tightly 
correlated initial conditions (Figure 4), Cdpo < 1. At time t, there 
is a sudden increase in the reaction rate, a “fast burst”, because 
the initially correlated pairs meet with a high probability. This 
burst is fairly sharp (decreasingly so with increasing p0Xd) and, 
once it is over, the ynormal” A + A behavior sets in again. 
This behavior continues until finite size effects set in at very low 
densities. This analysis is borne out quantitatively by our 
simulations. 

Consider next the less tightly correlated case where poXd > 1 
but not sufficiently large for segregation to occur. In one 
dimension 1 < pox < 6 (in two dimensions 1 < poh2 < 350). In 
this regime there is some interpenetration of initially correlated 
reactant pairs. At time t, a slow burst begins that builds up over 
a much longer time than in the previous case, as seen in our 
simulations. 

We now discuss the situation when poXd is large (PO >> 6 in one 
dimension, pox2 >> 350 in two dimensions), so that t, < re (Figure 
2) .  In this regime the A + B reaction behaves quite differently 
from the A + A reaction for times t 1 r,. At timet, segregation 
begins, and the segregated aggregates grow in size as they would 
in the case of random initial conditions. However, this growth 
stops at a time r - tc = X2/8D, when the aggregates are of linear 
size -A. At this time the aggregates actually begin to shrink. 
The shrinkage continues until a single particle per aggregate 

remains; that is, A and B particles are arranged in an essentially 
latticelike way with ”lattice constant” 1. This occurs at a time 
that we call t,. Within a time of order h2/2D beyond this, at a 
time that we call tab, a slow burst begins which eventually ends 
in either an A + A-likeuncorrelated behavior or with finite lattice 
size behavior. This description is again quantitatively borne out 
by our simulations. 

As the difference between t, and t ,  decreases (that is, as poXd 
becomes smaller), the behavior described in the progression of 
Figure 2 smoothly merges into that of Figure 4; at first with no 
segregation regime but still with a slow burst. In turn, with a 
further decrease in poXd the slow burst behavior smoothly merges 
into the fast burst. These transitions are also observed in our 
simulations. 

Let us finally summarize our major results. For completeness 
we include a summary of our results for the random initial 
condition case.31 

For random initial conditions we found three main novel 
features: 

1. At early times the A + B - 0 system does not segregate. 
Instead it behaves exactly as does the A + A - 0 system, with 
both classical t1 and nonclassical 

2. This behavior stops at a time t,, when the segregation process 
begins. We have found scaling laws for t ,  and for the density p, 
at timet,. Our simulations yield the unknown dimension-specific 
parameters for d = 1 and d = 2. 

3 .  Eventually, finite system size effects set in when the 
segregated aggregates are within an order of magnitude of the 
size of the system (linear dimension) at a time tf whose scaling 
behavior we have confirmed. Again, we have determined 
dimension-specific parameters for d = 1 and d = 2 from our 
simulations. These results provide information on the segregation 
process in infinite lattices. 

Our simulations are in excellent agreement with our theoretical 
predictions. 

For correlated initial conditions we have clarified the variety 
and complexity of different time progressions as a function of the 
initial conditions. The most important characterizing parameter 
is the product poXdof the initial density and the correlationvolume. 
If this product is small we find the following principal features: 

1. The A + B - 0 reaction proceeds exactly as does the A 
+ A - 0 reaction for the same values of PO and A. In particular, 
there is no segregation in the A + B system in this case. Neither 
one of these two reactions has been studied before in this regime 
to the best of our knowledge. 

2. At early times the behavior is that of the uncorrelated A 
+ A problem, again including both classical and nonclassical 
regimes. At time r, = X2/8D, an increase (burst) in the reaction 
rate is observed which arises from the annihilation of correlated 
pairs. 

3. Once the burst is over the behavior settles back to the 
uncorrelated nonclassical A + A form and/or behavior produced 
by finite system size effects. 

When poAd is large, segregation does occur in the A + B - 
0 reaction. The progression of events is as follows: 

1. At early times the A + B - 0 reaction again (as always) 
behaves the same as the A + A - 0 reaction (classical, r’lz). 

2. The A + B system departs from this behavior at the same 
time t ,  determined in the random initial condition problem, and 
segregation begins (t-44). 

3. The segregation process is halted at time r, = X2/8D, when 
the aggregates, which at this point are of linear size -A, actually 
begin to shrink ( t ( d + 2 ) / 4 )  until only one particle per aggregate 
remains at time t,. 

4. At a time fsb which is of order X2/2D beyond tes there is a 
(slow) burst when these remaining particles meet. These are not 

(for d I 2) behavior. 
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the originally correlated particles so one might call this a 'burst 
echo" or "delayed burst". 

5.  Once the burst has exhausted itself, the nonclassical A + 
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