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The present paper deals with electronic excitation transfer in columnar liquid crystals formed by disklike
molecules. The transport process is considered to occur in the singlet state via random walk hopping and is
studied by Monte Carlo simulations. The distance dependence of the hopping probability is determined by
the extended dipole approximation. Long-range steps, both intracolumnar and intercolumnar, are taken into
account. The influence of (i) the number of nearest neighbors to which hops may occur, (ii) the intercolumnar
distance, (iii) the length and the orientation of the transition dipoles, on the root mean square displacement
along the column axis and the survival probability in presence of traps is investigated. It is shown that
long-range hops slow down the transfer process. The transport is initially one-dimensional and becomes
three-dimensional at longer times. The crossover regime is shifted to shorter times when the intercolumnar
distance decreases or the length of the transition dipoles increases. The motion of the excitation is accelerated
either by a better ordering of the transition dipoles around the column axis or by a continuous change of their
orientation during the walk.

1. Introduction

A large number of publications deal with energy transport in
restricted geometries. Among the various systems studied >
experimentally in this respect, columnar liquid crystals have
attracted attention because of their highly anisotropic strutture
(Figure 1). Indeed, these molecular materials have been
considered as systems in which excitation transport should beFigure 1. Columnar liquid crystals are usually composed of disklike

one-dimension&-® Such an assumption seems to be quite molecules containing a flat and rigid core, surrounded by flexible chains.

reasonable for triplet migration occurring via the short-range | N€ir structure corresponds to stacks of segregated columns separated
hange interactiorn’s.Conversely, for singlet states, the ideal by the chains in a liquid state. The intercolumnar distance istDs
exc g : Y Y ! A, depending on the lateral chain length, while the stacking distance

pif:.ture of a one-dimensional process turned out to be oversim-js smaller than 4.5 A. Columnar mesophases are stable at a certain
plified.® temperature range; upon cooling, crystallization takes place, resulting

The most detailed investigation of singlet excitation transport in & change of the molecular arrangement. In some cases, the columnar
in columnar liquid crystals was carried out for hexakis(alkoxy)- Structure can be frozen (glassy state).

triphenylenes for which energy migration takes place viarandom  The most important conclusion of the above mentioned
walk hopping®® The fluorescence decays of these mesophasesanaysis of experimental data was that molecules cannot be
containing energy traps were fitted by theoretical curves, the ¢onsidered as simple points in the description of the transfer
fitting parameter being the hopping time between two neighbor- procesd. Indeed, in columnar phases, the stacking distance is
ing molecules in the same column. At a first approximation, a smaller than the “diameter” of the disklike chromophores.
one-dimensional random walk model allowing hops only to first Therefore, the orientation and the length of transition dipoles
nearest neighbors was testedhis model gave quite good fits,  haye to be taken into account. The effect of those two factors
but the resulting hopping time (30 fs) was too small for an on the properties of the eigenstates of columnar aggregates
incoherent proces$. Following this intriguing result and in  formed by triaryl pryrylium salts has been already depicted in
order to take into account the different factors playing a role in ef 11 in which the extended dipole approximatiwas used.

the excitation transport, Monte Carlo simulations were used to  \jthin this context, we decided to use Monte Carlo simula-
fit experimental fluorescence decayd.ong-distance hops, both  tions to study in detail the singlet transport occurring in columnar
intracolumnar and intercolumnar, were considered. Moreover, phases via a hopping mechanism. We determine the hopping
various patterns were used for the distance dependence of theyohapility by the extended dipole approximation, and we
hopping probability, all corresponding to Coulombic interactions - neglect exchange interactions. We mainly focus on two relevant
and all giving good fits. The type of those patterns proved to guantities, the root mean square displacement along the column
be quite crucial for the hopping time values which were found axis [R,) and the survival probability of the excitation in presence
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to vary from several femtoseconds to picoseconds. of traps (P).1314 The former quantity allows us to illustrate
the temporal and spatial evolution of the excitation within those
€ Abstract published irAdvance ACS Abstractdune 1, 1996. molecular materials, while the latter is related to measured
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Figure 2. Schematic representation of the extended dipole model. The
transition moment is approximated by a dipole composed of two charges
+¢ and —¢ separated by a distanteand placed at the center of the
molecule. The coupliny between the two transition moments is given
by the electrostatic interaction between the four charges (eq 2).

fluorescence decays. The parameters whose influendg, on
and® is studied are (i) the number of nearest neighboysd
which hops may occur, (ii) the intercolumnar distance, and (iii)
the length and the orientation of the transition dipoles around
the column axis. We also quantify the one-dimensional
character of the transfer process by calculating the probability
of the excitation to remain in the same columid as a
function of time. D

Various types of columnar liquid crystals existin the Figure 3. Schematic representation of the molecules considered in
present investigation, we are interested iR, Inesophases, the calculation of the hopping probability for = 3. Excitation is

illustrated on Figure 1, because energy transport has been studieditially located at the origin of a Cartesian coordinate system (disk in

experimentally in such systerf8. In Dn, mesophases, the _grey) and can _jump to any of the representeql mo_Ie_cuIes in the same or
) © ’ one of the six neighboring columns. For simplicity, only one of the

. . . . |

stacking dlstgnce is constant, the arqmatlc cores are Centerech neighboring columns is shown. Arrows denote the transition
and perpendicular to the column axis, and the columns are gipoles. The anglé used in eqs 36 is defined a® = o — o The
arranged in a hexagonal array. position to which excitation hops has coordinata®,t).

The paper is organized as follows. In section 2, we determine
the distance dependence of the hopping probability in the dependence of the coupling equivalent to the quantum mechan-
extended dipole approximation and we present the various ical one which contains not only dipetelipole but also higher
patterns related to the orientation of the transition dipoles. The terms (dipole-quadrupole, quadrupotejuadrupole, octupote
procedure followed in the Monte Carlo simulations is described octupole, etc.y.
in section 3. In section 4, we report and discuss the results of The transition dipoles of two molecules belonging to @ D
the calculations. In section 5, we summarize our approach andPhase are parallel to they plane (Figure 3). If they are located

ARUABQR.
SR

we draw the final conclusions. at positions (0,0,0) andyp,c) of a Cartesian coordinate system,
the distances,4, r— _, ro—, andr_,, appearing in eq 2, can be
2. Hopping Probability written as follows:

Energy transfer takes place through a hopping mechanism
when the couplingy between transition moments is weaker than N+ =
the Boltzmann factor. If the transfer is slow compared to
vibrational relaxation, the hopping ratgis given by the Fermi
golden rule: r-

(a - lz(cose - 1))2 + (b - 12 sin 9)2 + cz]m 3)

= [(a + lz(cose - 1))2 + (b + '5 sin 0)2 + czrlz )

= 47%0\Vh 1 2 2 1/2
k= 47°pV'T @) r+_=’(a—12(c059+1)) +(b+lzsm9) +c2] (5)
wherep is the density of final states. The hopping titags

the reciprocal of the hopping ratg & 1/k,) and the hopping _ I 2 I .2, o2
probability is proportional to the hopping rate. Equation 1 gives = (a + E(COSQ + 1)) + (b 2 sin 0) te ] ®)
the possibility of correlating the hopping probability to the
coupling and, consequently, to transition moments. The angled is the difference) = o — ay; the anglesy; and

In the extended dipole mod#l,a transiton moment is o are defined in Figure 3. Equations-@ allow us to determine
approximated by a dipole composed of two chargfesind—e the probability of the excitation to hop from one molecule to

separated by a distandeand placed at the center of the another as a function of their position and their orientation within
molecule. The dipole momeptis equal tcel, and the coupling ~ the columnar lattice.
V between two transition moments is given by the electrostatic ~ Regarding the orientation of transition dipoles around the
interaction between the corresponding four charges (Figure 2):column axes, we examine three different patterns, related to
the molecular orientation in columnar liquid crystals: “random
V= K(i—iri—i—i) B and frozen”, “randomizing”, and “helical”.

In the first one, the transition dipoles are randomly distributed
around the column axis and they do not move during the transfer
whereK is a constant. It should be stressed that the dipole process. Experimentally, such a pattern typically corresponds
length used in the extended dipole approximation is not the to a glassy state, in which molecular movements are hindéred.
length of the transition dipole in a quantum mechanical sense. In the second pattern, the transition dipoles are randomly
It corresponds to an effective length providing a distance distributed and they reorientate after each hop of the excitation.
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Randomizing structures have been used in the study of random
walks in polymeric system:17 This pattern is appropriate for
liquid crystalline columnar phases, in which various types of
molecular motions occur during the hopping procéss.

Finally, in the helical pattern, the angle between two
neighboring transition dipoles is constant and equal fo 8&ch R/(A)
helical structures have been determined by X-ray diffraction
measurements for certain columnar phases formed by triph-
enylene derivative¥»21

100

3. Simulation Procedure

A “particle” corresponding to the excitation, localized on a
single molecule, is considered to perform a random walk on a
three-dimensional lattice consisting of®ldtes (Figure 3). The
sites are aligned along thedirection at a distance of 3.6 A.
The column axes form a hexagonal array in tly@lane. The
intercolumnar distance is varied between 15 and 35 A. We
use cyclic boundary conditions in theandy directions and 0.8
reflecting ones in the direction.

The “particle” is given the possibility of jumping tonZites
in the same columm(above and below the current position)
and to 21 — 1 sites of the six neighboring columns (Figure 3).
The number of nearest neighbaorss varied between 1 and 12.
The distance dependence of the hopping probability is deter- 0.5
mined as explained in section 2. The lengths of the extended
dipole tested are 1, 2, 3, 4, 5, and 6 A. The point dipbke (

0) is simulated in the calculations by settings 1073 A. 04 ; 1'0 100

For the calculation of the survival probability, we consider time (ns)
that :!'% of 'the lattice sites are energy traps acting. W!th the Figure 4. Influence of the number of nearest neighbars<(1, 2, 4,
trapping efficiency equal to 1. Traps are randomly distributed ¢ g, 10, 12) to which excitation may jump on (a) the root mean square
in the lattice. We monitor the time needed for a particle to be displacement along the column axig)(and (b) the survival probability
trapped. The same procedure is repeated-10° times, for @ for a trap concentration of 18 The dashed line corresponds to
different trap distributions. Then, we calculate the percentage the first nearest neighbor approximation. Conditions: “random and
of the particles which have not been trapped at timas a frozen” orientation of transition dipoles= 3 A, D = 25 A,
function of time. In the plots presented below, we do not take
into account the lifetime of the excitation in the absence of traps
(intrinsic lifetime). The estimated error on the data is of the
order of 1% for the root mean square displacement along the
column axis R, and 0.5% for the survival probabilitsp.

In order to make the connection with the real systems clear

0.9

0.7

0.6

and® at the time scale in which we are interested. Indeed, the
probability of hopping to further neighbors ¢ 10) is so small
that it is never realized within the examined time scale.

It is worth noticing that the curves obtained for= 1 do not
follow the monotonicity ofn. This happens because there is a
. . . - ' relatively high probability of finding two successive molecules
we use physical units for the distance (A) anq time (ns). For in the same column whose transition dipoles form an angle close
this purpose, we have assumed that the hopping time betweenlo 90¢°, somewhere above the current position and somewhere
two nearest neighbors in the stack corresponding to parallel belowl it. The hopping probability is then too small, and these

traInS||t|ct)_n dipoles t'ls 1 p%.l W? é&fggnt the results dc_:f otur sites act as infinitely high barriers. The particle is thus confined
calcuiations on a ime scale of &- ns, corresponading 1o 4y, e region between these two barriers, and its motion is

usual experimental conditions for recording fluorescence decays.Iimited Whenn > 2, the particle is not hampered by the

presence of these high barriers, since it may easily jump over.
Finally, we observe in Figure 4 that the plots of bé&hand
4.1. Number of Neighbors. At first, we examine the role & present crossovers around 10 ns. This behavior will be
played by the number of nearest neighbote which excitation discussed in the following paragraph (section 4.2), together with
can hop. This question has been addressed previously but inthe results shown in Figure 5.
relation to different basic quantities of the random walk than  4.2. Intercolumnar Distance. Figure 5 shows the influence
those presented hef&?® Figure 4 shows the influence afon of intercolumnar distanc® on R, and ®. For comparison
the root mean square displacement and the survival probability.reasons, the behavior of a one-dimensional systens=(c)
We can see that whemincreasesR, becomes smaller, while  characterized by a dipole length of 3 A and “random and frozen”
@ increases. In other terms, the higher theused in the orientation of transition dipoles is also illustrated. In the latter
simulations, the more restricted appears the motion of the case, a straight line is observed aRgvaries ast®% Such a
excitation. This happens because the time spent for a long-variation is different from that expecteB t°) for a random
range hop, for example, to the 10th neighbor, is considerably walk on a one-dimensional system with steps only to first nearest
longer than the time needed by the particle to cover the distanceneighbors without taking into account the size and the orientation

4, Results and Discussion

of 10 lattice sites with steps to the first neighbor only. of transition dipoleg? It is clear that those factors make the
We observe that, at a given time, the curves in Figure 4 transfer process slower.
converge for a certain value of, for example, at 100 ns, At early times, the curves plotted in Figure 5a for different

convergence occurs for= 10. Thus, including more than 10 D values coincide with the straight line corresponding to the
neighbors in the calculations does not affect the profilé&rpof one-dimensional behavior. As time passes, they deviate from
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Figure 6. Influence of the intercolumnar distancB & 15, 20, 25,
30, 35 A) on the probability for the excitation to remain in the same
column Pig) as a function time. Conditions: “random and frozen”
orientation of transition dipole$,= 3 A, n = 10.
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Figure 5. Influence of the intercolumnar distancP & 15, 20, 25,

30, 35 A) on (a) the root mean square displacement along the column 10 1 1

axis (R, and (b) the survival probabilityp for a trap concentration of 0.1 1 10 100
102, The solid line corresponds to a one-dimensional system-( time (ns)

). Conditions: “random and frozen” orientation of transition dipoles,

| =3A, n=10. 1

it, because excitations start departing from the column where
they were initially formed. WheM decreases, the deviation
from the one-dimensional behavior is observed at earlier times.
In fact, upon decreasin®, the probability of intercolumnar
jumps increases and the transfer process becomes three-
dimensional earlier. Crossover regimes are reported in the
literature for other types of syster#s?6 When intercolumnar 0.7
jumps become effective, the transfer rate along the column axis,

vz defined as

0.9

0.8

v, = 8Rz/8t (7) 0'60_1 ; l‘r 100

time (ns)

diminishes.
P Figure 7. Influence of the length of the extended dipole<(0, 1, 2,
We observe in Figure 5b that the decay becomes Slower& 4,5, 6 A) on (a) the root mean square displacement along the column

when D decreases. As a matter of fact, the smaller the ;s ) and (b) the survival probabilitg for a trap concentration of
intercolumnar distance, the more rapid the transition toward 10-2. Conditions: “random and frozen” orientation of transition

the three-dimensional behavior; such a behavior involves dipoles,D =25 A, n=10. The solid line = ) in (a) corresponds
long-lasting intercolumnar hops which contribute to the elonga- to a one-dimensional system characterized by random and frozen
tion of the particle lifetime. Therefore, at a given time, the Ofientation of transition dipoles arld= 3 A andn = 10.
closer the columns, the higher tide value. We also remark ) . . )
that all of the decay curves are quite different from that |nter_columnar jumps WIFhIn th_e first few n_an_oseconds_. This
corresponding to the one-dimensional systém= «), even at confirms that the one-dimensional model is inappropriate for
short times. fitting fluorescence decays of these systems.

In order to obtain a better picture about the dimensionality = 4.3. Length and Orientation of Transition Dipoles. Figure
of the examined system, we have calculated the proballity (7 shows the influence of the extended dipole lengtiRpand
for the excitation to remain in the column in which it has been ®. We remark that, in the one-dimensional region, the transfer
created as a function of time (Figure 6). We observe that only rate v, does not depend on the dipole length (Figure 7a).
for D > 30 A, the transport is quasi-one-dimensiordq(> Conversely| has an influence on the time at which the crossover
0.9) during the first few nanoseconds. For distances 208 toward the three-dimensional behavior takes place: the longer
< 25 A, corresponding to the triphenylene columnar phases thel, the earlier the intercolumnar jumps become effective. At
studied previously;® 50% of the excitations have performed longer times, when the three-dimensional regime is developed,
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2 finds itself in an environment unfavorable for its motion, it
spends a long time in it, while in the latter, the local environment
changes continuously and it is easier for the particle to escape.

Finally, we can make a general remark concerning the
absolute values related to the root mean square displacement
along the column axis and the survival probability in the
presence of traps (Figures 5, 7, and 8).

We can see tha®, does not exceed 200 A (56 molecules) in
the examined time scale. Such smllvalues show that, for
nonaligned samples, the motion of the excitation will be
practically restricted within a single monodomain whose size
10 . L is of the order of the micrometers. This is in agreement with

R,(A)

o1 v 10 100 fluorescence anisotropy measuremeatsd also explains why
time (ns) macroscopic alignement of the columnar phases containing traps
. does not affect the fluorescence dec#ys.
b

The survival probability at 100 ns is still high>(.5).
Consequently, we deduce that fluorescence of columnar phases
containing 102 traps decays mainly because of the intrinsic
lifetime of the fluorescent stateusually a few nanosecondand
not because of the trapping process.

5. Summary and Conclusions

In the present work we have investigated singlet excitation
transport in columnar phases using Monte Carlo simulations.
This computational technique has enabled us to take into account
the complex structure of the examined systems, to limit the
number of approximations and, therefore, to construct a model
close to reality. We have assumed that the transfer process takes
the root mean square displacement along the column Bjisd (b) place via random walk hopping, and we have taken into account

the survival probability® for a trap concentration of 8. Condi- Iong-QIstgnce hops, both mtracqlumnar .and intercolumnar.
tions: | = 3 A, D = 25 A, n = 10: *random and frozen”, the transition Considering that the stacking distance is smaller than the

dipoles are randomly distributed around the column axis and they do “diameter” of the disklike molecules, we have determined the
not move during the transfer process; “randomizing”, the transition distance dependence of the hopping probability in the extended
dipoles_art_e randomly distributed and they reorient_ate aft_er each hop ofdipo|e approximation.
_the excitation; hellca_l ,thg—z angle between two neighboring molecules Our study has been focused mainly on two properties of the
in the same column is-45°. .

random walk, the root mean square displacement along the
column axis and the survival probability in the presence of traps.
We have presented our results using physical units for the

0.5 — L
0.1 1 10 100

time (ns)

Figure 8. Influence of the orientation of the transition dipoles on (a)

v, becomes again independentlof The survival probability
curves (Figure 7b) coincide at early times; then they split up, . ) . :
and they meet again at longer times. This indicatesltbaes d'Sta”_CG (A) and time (ns) so that th_e connection with
not affect®, neither during the one-dimensional behavior nor experimental systems is as clear as pqs&ble. ) )
the three-dimensional one, but it does play an important role  We have shown that long-range interactions are quite
during the crossover regime. At a given time during this regime, important and can change significantly the results of S|mulat|c_>ns.
@ increases for increasilg Thus, regarding the time at which ~ 'N general, the transfer process appears to be more rapid if we
the crossover regime appears, increasihgs the same effect neglect Ion_g-dlstance hops. Therefore, result_s based on first
onR, and® as that of decreasing. This suggests that when nearest neighbor approaches should be considered with care.
the dipole length increases, the average interaction between We have drawn the conclusion that the system can be treated
transition moments of chromophores located in neighboring as one-dimensional only for short times, of the order of a
columns becomes stronger and, consequently, the probabilitynanosecond or less. Energy transport seems to take place
of intercolumnar jumps becomes higher. initially inside one column. Afterward, we observe a transition

In Figure 8 we examine three different patterns describing regime where excitations start jumping to neighboring columns,
the orientation of the transition dipoles (cf. section 2). For all and finally excitations move in the three-dimensional space. This
of the plots presented previously, the frozen and random patternbehavior is influenced by both the intercolumnar distabce
has been used. When the transition dipoles remain frozen duringand the lengtt of the transition dipole: the three-dimensional
the transport, but instead of being randomly distributed around character of the walk is delayed in time by increasingr by
the column axis, they form a helix in which the angle between decreasind. Finally, we have evidenced that either a better
two neighboring dipoles is 45R; increases whilé decreases.  ordering of the transition dipoles or a continuous change in their
This means that an increase in the order inside the column will orientation makes the transport process more rapid.
increase the distance to which energy can migrate and will
decrease the survival probability because the barriers, generated Acknowledgment. This work has been performed in the
by unfavorable orientation of transition dipoles, disappear. The frame of a European COST D4 project (design and preparation
same trend is observed if the transition dipoles remain randomly of new molecular systems with unconventional electrical,
distributed but they reorientate after each hop. The difference optical, and magnetic properties) entitled “Columnar Liquid
in the behavior between a random and frozen and a randomizingCrystals as Energy Guides for Molecular Electronics”. The
pattern is explained as follows. In the former, when the particle authors thank Dr. P. Millidor helpful discussions.
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