
Percolation of randomly distributed growing clusters: Finite-size scaling and critical exponents
for the square lattice

N. Tsakiris, M. Maragakis, K. Kosmidis, and P. Argyrakis
Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

�Received 26 April 2010; revised manuscript received 23 June 2010; published 11 October 2010�

We study the percolation properties of the growing clusters model on a 2D square lattice. In this model, a
number of seeds placed on random locations on the lattice are allowed to grow with a constant velocity to form
clusters. When two or more clusters eventually touch each other they immediately stop their growth. The
model exhibits a discontinuous transition for very low values of the seed concentration p and a second,
nontrivial continuous phase transition for intermediate p values. Here we study in detail this continuous
transition that separates a phase of finite clusters from a phase characterized by the presence of a giant
component. Using finite size scaling and large scale Monte Carlo simulations we determine the value of the
percolation threshold where the giant component first appears, and the critical exponents that characterize the
transition. We find that the transition belongs to a different universality class from the standard percolation
transition.
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I. INTRODUCTION

Percolation represents a paradigmatic model of a geomet-
ric phase transition �1–7�. It has been widely studied and has
numerous applications in many areas of physics �8–17�. Its
importance and practical applications are described in detail
elsewhere, see for example �2�. Here, we will present for the
sake of clarity and completeness, some necessary definitions
of important quantities that commonly appear in the litera-
ture. In the classical site percolation model, the sites of a
square lattice are randomly occupied with particles with
probability p, or remain empty with probability 1− p. Neigh-
boring occupied sites are considered to belong to the same
cluster and percolation theory simply deals with the number
and properties of these clusters. When the occupation prob-
ability p is small, the occupied sites are either isolated or
form very small clusters. On the other hand, for large p there
are a lot of occupied sites that have formed one large cluster
and it is possible to find several paths of occupied sites
which a walker can use to move from one side of the lattice
to the other. In this latter case, it is said that a giant compo-
nent of connected sites exists in the lattice. This component
does not appear in a gradual “linear” way with increasing p.
It appears suddenly at a critical occupation probability pc.
Below pc there are only small clusters and even if we in-
crease the lattice size considerably, these clusters remain
small, i.e., the largest cluster does not depend on the system
size. Above pc, suddenly, small clusters join together to form
a large cluster whose size scales with system size. Hence, the
term giant component or infinite cluster which is very com-
mon in the literature �1�.

In percolation, p plays the same role as the temperature in
thermal phase transitions, i.e., that of the control parameter,
while the order parameter is the probability P� that a site
belongs to the infinite cluster. For p� pc, P� increases with p
by a power law

P� � �p − pc��. �1�

Other important quantities are the correlation length � which
is defined as the mean distance between two sites on the

same finite cluster and the mean number of sites S of a finite
cluster. When p approaches pc, � increases as

� � �p − pc�−�. �2�

The mean number of sites S of a finite cluster also diverges
at pc

S � �p − pc�−�. �3�

The critical exponents � , � and � describe the critical be-
havior associated with the percolation transition and are uni-
versal. They do not depend on the structure of the lattice
�e.g., square or triangular� or on the type of percolation �site,
bond or even continuum� �2�.

In this paper, we study numerically the percolation prop-
erties of the growing clusters model �18� for the case of 2D
square lattice. The model is described in Sec. II. We focus on
the intermediate concentration regime and find that the
model exhibits a nontrivial percolation transition which be-
longs to a different universality class from standard percola-
tion. We determine quite accurately the position of pc, and
the values of the critical exponents associated with this tran-
sition.

II. GROWING CLUSTERS MODEL

The growing clusters model was introduced in detail in
�18�. A square lattice of size L is randomly populated with
“seeds” with probability p. These seeds are allowed to grow
to clusters isotropically and stop when they touch another
growing aggregate, see Fig. 1 for a schematic of the system
evolution. At every time step, i.e., one Monte Carlo Step
�MCS� all seeds are investigated once for the possibility to
grow in size instantaneously in all neighboring sites. Inves-
tigation sequence is random in order, as is customary in such
type of simulations. Sequential investigation leads to statis-
tically the same results. Each seed is allowed to grow its
periphery by one layer �increase the radius by one� provided
that there is no overlapping with other growing seeds. Thus,
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each seed becomes an evolving cluster. As soon as two, or
more, clusters touch each other, the growth of all of the
adjoined clusters stops. Neighboring sites are considered to
belong to the same stable cluster. To study the model we
perform large scale Monte Carlo simulations and we monitor
the properties of the clusters that are formed. Below we
present the details of the Monte Carlo algorithm used for the
implementation of the growing clusters model.

�1� For each of the L2 sites of square lattice of size L a
random number r� �0,1� is drawn from a uniform distribu-
tion. A probability p is fixed and if r� = p the site is marked
as occupied, otherwise is marked as empty. A unique label is
assigned to each occupied site. All unique labels are marked
as active.

�2� An occupied site is selected at random. If all of its four
neighboring sites are empty, then they become occupied and
are assigned the same label as the selected site i.e., they take
the same label as their “seed.” Otherwise, if one or more of
the neighboring sites are occupied no growth process takes
place. These occupied neighboring sites are assigned a com-
mon label equal to the minimum of their unique labels. This
label is marked as inactive.

�3� The growth process continues with the random selec-
tion of active labels. At each time microstep an active label is
selected. The peripheral sites that belong to the evolving
cluster characterized by this label, �i.e., sites that have the
selected label and at least one empty nearest neighbor� are
give the chance to grow. Growth occurs only if all peripheral
sites have nearest neighbors with label equal to that of the
site or are empty. In such case all empty neighbors of the
peripheral sites become occupied and are given the same
label as their “parent.”

�4� If at least one of the peripheral sites has a nearest
neighbor with a label different from the label of the site then
growth process stops. A relabeling is done as follows. We
identify the nearest neighbors of all the peripheral sites that
have a label different from that of the site. From the set V of
these different labels we select the one with the minimum
value m. All sites on the lattice that have labels belonging to
set V are assigned the new label value m. Then this label
value is termed as inactive.

�5� The system stops evolving when there are no more
active labels.

We average our results over 1000 different system real-
izations to obtain better statistics. We apply periodic bound-
ary conditions in order to minimize finite size effects, as is
commonly done in large scale Monte Carlo methods.

III. FINITE SIZE SCALING

Equations �1�–�3� are valid for infinite systems close to
the critical threshold. In practice, however, it is not possible
to use them to calculate the critical exponents with consid-
erable accuracy due to finite size effects. Thus, one has to
resort to finite size scaling �2� techniques. Due to the finite
size of the lattices that can be simulated the order parameter
is expected to depend on the system size. Assuming that we
are close to the critical threshold so that the correlation
length � is comparable to the system size L it can be shown
that the probability Pmax that a site belongs to the largest
cluster follows the scaling relation

Pmax = L−�/�F�L1/��p − pc�� , �4�

where we have deliberately used the notation Pmax instead of
P� in order to emphasize the finiteness of the systems. Here
F is a suitable scaling function. Similarly, any other quantity
varying as �p− pc�x is expected to scale similar to Eq. �4� with
� replaced by the appropriate exponent x and with a different
scaling function F. For example, the mean mass S of all the
finite clusters i.e., the mean size of the cluster where a ran-
domly chosen site belongs to, which is an important quantity
in classical percolation theory, is expected to follow

S = L�/�F1�L1/��p − pc�� , �5�

where we denote the scaling function with F1 to emphasize
that it is in principal different from the scaling function in
Eq. �4�.

At p= pc, these quantities are expected to scale as power
law since the scaling function reduces to a simple propor-
tionality constant. This result gives a way to determine the
critical exponents. One important characteristic of the stan-
dard percolation transition is that exactly at the critical point,
the largest cluster has a fractal geometry meaning that the
mass of the largest cluster S1 scales with the system size as
S1�Ldf, where the fractal dimension df is known to be equal
to 91/48. Since S1= PmaxL

d, where d is the dimensionality of
the space �d=2 in the lattice case� one can easily derive a
scaling law relating df , � and �, namely df =d−� /�.

IV. RESULTS AND DISCUSSION

To obtain an indication of the system critical behavior, we
start by monitoring the size of the largest cluster S1 as a

FIG. 1. �Color online� Top Left: at time t=0 Monte Carlo Steps
�MCS� 6 seeds are randomly placed on a lattice with L=40. Top
right: after t=3 MCS there are 6 evolving clusters. Bottom Left:
After t=6 MCS there are 4 evolving clusters, as 2 clusters have
touched each other and stopped growing. Bottom right: final state of
the system. There are no evolving clusters and 3 stable clusters have
been formed.
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function of the initial “seed” probability p, see �18� and Fig.
2 therein. There, it is evident that the system exhibits two
phase transitions: one very sharp transition at p=0 and a
second, smoother, transition around p�0.5. The first transi-
tion is discussed in detail at �18� and characterized by the
fact that the size of the largest cluster S1, which is the order
parameter of the system, has a discontinuity for p=0 and,
thus, the system exhibits a sharp, albeit artificial, first order
phase transition.

The second phase transition turns out to be rather inter-
esting. It is reminiscent of the classical percolation transition
and it is important to clarify the extent of this similarity.
Thus, we simulate systems of several different sizes and for
several different initial seed concentrations. After allowing
the growth process to complete and the systems to reach
their final states, we study the probability Pmax that a ran-

domly chosen site belongs to the largest cluster. When there
are only few initial seeds, after the evolution of the system is
completed, the clusters formed are small and isolated. How-
ever, we expect that with increasing p when a large number
of seeds is introduced, the growth process will lead to the
formation of a large spanning cluster. This is the classic be-
havior seen in a system which undergoes a continuous phase
transition. In such cases, we can use finite size scaling to
determine the position of the critical concentration, pc, and
the critical exponents. Initially, we are interested in the ge-
ometry of the largest cluster at criticality and its fractal di-
mension df. In Fig. 2 we plot the size of the largest cluster
S1= PmaxL

2 as a function of the lattice size L for three differ-
ent initial concentrations, namely p=0.48, 0.496, and 0.52
�black squares, red dots and green triangles, respectively�.
For p=0.48 �squares� we observe a downward bending curve
which clearly indicates that p=0.48 is below pc as S1 does
not scale with the system size for large L. For p=0.496
�circles� we observe a straight line implying a power law
scaling as expected for p= pc. The value for the critical point
agrees reasonably well with our preliminary estimation for
the critical point from the position of the maximum of the
second largest cluster �18�. We calculate the fractal dimen-
sion, df, from the slope of the straight line at pc and find
df �1.79�0.01. For p=0.52 �triangles� we are well above

FIG. 3. �Color online� Snapshot of the final state of a system
with L=100 with initial seed concentration p=0.496 which is equal
to the critical concentration �p= pc�. Different colors correspond to
different clusters. The final coverage is pf =0.538. The largest clus-
ter is shown in black color.

FIG. 4. �Color online� PmaxL0.206 vs p for seven different system
sizes, namely L=100,200,400,600,800,1000,1200. The curves
cross at pc=0.496 in agreement with the scaling relation Eq. �4�.

FIG. 5. �Color online� Mean mass S of the finite clusters as a
function of L for p= pc. Points are Monte Carlo Simulation results.
The straight red line is a best fit to the simulation data and has a
slope of 1.63.

FIG. 2. �Color online� Size of the largest cluster, S1= PmaxL2, as
a function of the lattice size L for three different initial concentra-
tions, below pc at p=0.48 �black squares�, at pc=0.496 �red dots�,
and above pc at p=0.52 �green triangles�. Points are Monte Carlo
Simulation results. The dotted line has a slope equal to 2 and the red
straight line is a power law fit with slope 1.79. The black straight
line is just a visual aid.
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pc. In the regime above the critical point �1�, that the size of
the largest cluster exhibits a crossover. For length scales up
to the correlation length � of the system its structure remains
fractal-like and the scaling exponent is still roughly equal to
df. For length scales greater than � the structure appears
more compact and the scaling exponent becomes equal to the
systems dimensionality, in this case d=2. Our findings are
consistent with this prediction, as seen in Fig. 2 where the
dotted line is a visual aid with slope equal to two. Here, we
should point out a technical difficulty. Since the fractal di-
mension �1.79� is rather close to the system dimensionality
�d=2�, the accurate determination of df becomes quite tricky
and highly dependent on the accurate determination of the
critical point pc. This is because of the crossover behavior of
S1 for p� pc which can easily lead to df estimations higher
that the correct one. Thus, it is necessary to use another
method, presented below �see Fig. 4�, to confirm that pc
=0.496�0.002 for the growing clusters model.

Figure 3 shows a snapshot of the clusters that have been
formed in a random realization of a growing clusters system
with L=100 at pc=0.496 once the system has reached its
steady state. Periodic boundary conditions have been used
for the cluster labeling. The largest cluster is shown in black
color.

In order to determine more accurately the perco-
lation threshold and the critical exponent � /� ratio
in the same time, we use Eq. �4�. We plot in Fig. 4
PmaxL

�/� vs p for seven different system sizes, namely L
=100,200,400,600,800,1000,1200, and we vary � /� until
all curves cross at one single point only. This is done for
� /�=0.206��0.003� and for p= pc�0.496�0.002. This re-
sult is in excellent agreement with our previous estimation
for the df and the scaling relation df =d−� /�. It also allows
to determine the exact location of the critical point with more
accuracy than the previous method.

Figure 5 shows a plot of the mean mass S of all the finite
clusters as a function of L for p= pc. At criticality, this quan-

tity is expected to scale as S�L�/� �see section III�. From the
slope of the straight line we estimate � /�=1.63�0.01. This,
as well as the previous result, are in very good agreement
with the scaling relation d�=�+2�.

Finally, we calculate the critical exponent �. In Fig. 6 we
plot PmaxL

0.206 vs �p− pc�L1/� for seven different system sizes
L=100,200,400,600,800,1000,1200, and we vary the ex-
ponent 1 /� until all data collapse on one single curve. The
data collapse, in agreement with Eq. �4� enables us to deter-
mine the critical exponent � with considerable accuracy. We
find that 1 /�=0.85�0.02.

We can determine other critical exponents from the scal-
ing relations that are known to connect them. Below, for
completeness, we present a table with the critical exponents
of the growing clusters model in comparison to those of
classical percolation �Table I�. The difference in the critical
exponents shows that the two models belong to different uni-
versality classes. Moreover, our calculated value of � implies
that the growing clusters model is also in a different univer-
sality class from the “invasion percolation” �11� model.

V. CONCLUSIONS

We have studied the growing clusters model and found
that it exhibits two phase transitions with increasing seed
concentration. A first order transition at p=0 and a continu-
ous transition at pc=0.496, separating a phase of isolated
clusters for p� pc from a phase where a giant component is
present for p� pc. Using finite size scaling we have calcu-
lated the position of the phase transition and the critical ex-
ponents with considerable accuracy to establish that this
transition belongs to a different universality class from the
standard percolation transition.
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TABLE I. Comparison of the critical exponents between the
classical percolation transition and the transition of the growing
clusters model. The exponents 	 and 
 are associated with the clus-
ter size distribution �1�.

Exponent Class percolation Growing clusters

� 0.138 0.24

� 2.38 1.91

� 1.33 1.17


=1 / ��+�� 0.395 0.46

	=1+
�d 2.05 2.08

df 1.89 1.79

FIG. 6. �Color online� PmaxL0.206 vs �p− pc�L0.85 for seven dif-
ferent system sizes L=100,200,400,600,800,1000,1200. Points
are simulation data. The data collapse to one single curve. Thus we
estimate 1 /�=0.85.
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