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Fluctuations of the particle density in an orderedcs232d two-dimensional lattice-gas system are studied
both analytically and by means of Monte Carlo simulations. The ordering is caused by a strong interparticle
repulsive interaction resulting in the second order phase transition. The lattice of adsorption sites is divided into
two sublatticessalmost filled and almost empty sublatticesd each of which contains a small number of structural
“defects,” i.e., vacancies and excess particles. The relaxation of the correlation function of fluctuations turns
out to be governed by two different functions. This peculiarity is to be contrasted with the traditional fluctua-
tion theory which predicts the existence of a single damping constant, determined by the collective diffusion
coefficient. A specific thesis of the proposed approach is that transport phenomena in ordered systems may be
described in terms of both displacements and generation-recombination of structural defects. Accordingly, the
correlation function of fluctuations depends on diffusion coefficients of two defect species as well as on the
generation-recombination frequency. Our theory reduces to the usual one when fluctuations occur under local
equilibrium conditions, i.e., for a sufficiently large size of probe areas and not too great values of interaction
parameter. The analytical results agree well with those obtained in the Monte Carlo framework.
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I. INTRODUCTION

This paper is concerned with the theoretical description of
a complex phenomenon, namely, fluctuations in ensembles
of particles adsorbed on a crystal surface. A regular particle
flow is realized as a sequence of random displacements of
individual particles. As a result, fluctuation characteristics in
adsorbate layers and kinetic coefficients, which describe
macroscopic transport of the adsorbate, are interconnected as
having the same origin. The fluctuationssi.e., spontaneous
deviations of physical quantities from their average valuesd
cause microscopic forces, which return the system to equi-
librium. It is evident that the corresponding relaxation pro-
cess does not depend on the nature of the initial disturbance
swhether it is thermally generated or caused by external
forcesd. Hence studies of fluctuations may be used for ob-
taining kinetic coefficients.

In the presence of external electric fields, adsorbate fluc-
tuations generate electric noisesffor example, noises of
emission current in field emission microscopysFEMd or tun-
nel current in scanning tunnel microscopysSTMdg. Hence
experimental measurements of the current-current correlation
function may provide valuable information about the adsor-
bate fluctuations. Usually, it is assumed that the collective
diffusion coefficient is a unique physical quantity, which
governs the decay of these fluctuations. Such consideration
looks quite reasonable in the case of a spatially homoge-
neous adatom system when the characteristic size of the
probe area is much greater than the correlation length deter-
mined by adatom-adatom interaction.

A simple method of obtaining collective diffusion coeffi-
cient based on measurements of the correlation function of
emission-current fluctuations was developed and widely used
in practicessee, for example, surveys of Gomer1 and Barth2d.
Its theoretical foundation has been given in Ref. 3. Later on,
a real-time technique employing ST microscopy has been

used to measure the diffusion coefficient by means of moni-
toring the current fluctuations on the tip.8 Similar to the FE
microscopy, the STM technique is based on the expectation
that any changes in particle density under the tip should in-
duce fluctuations in the measured tunneling current.

Additionally, numerical investigations of fluctuations in
probe areas can be used for obtaining diffusion coefficients
by computer simulations of the adsorbate migration. All
methods described above deal with microscopically small
probe areasfof the order of 100 Å in the case of FE micros-
copy, 10 Å or less in the case of ST microscopy, and of the
order of ten lattice constants in the case of Monte Carlo
sMCd simulationsg. Thus the question about the validity of
the diffusion equation for such small sizes may arise.

Another aspect of the problem is connected with the
particle-particle interactions. In the case of large interaction
parameterssor low temperatured and suitable adsorbate con-
centration, the adatom system undergoes a phase transition.
In what follows, we consider the case of second order phase
transition when a lattice of adsorption sites is divided into
two sublattices with different average occupation numbers.
Macroscopically, this system may be considered as homoge-
neous. At the same time, the relaxation of concentration fluc-
tuations behaves in a somewhat different way compared to
the disordered case. During the fluctuation relaxation two
distinct physical processes take place. Any local fluctuation
of concentration is redistributed between two sublattices,
thus forming a local equilibrium. The characteristic time of
local equilibration is equal to that of the orderingsdisorder-
ingd time of the adsorbate structure. Along with the local
ordering, the adatom flux induced by the concentration gra-
dient occurs. The flux intensity depends essentially on
whether or not local equilibrium has been established. When
the ordering-disordering process is fast enough, the mass
transport is governed by the usual diffusion equation, which
is determined only by the collective diffusion coefficientDc
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ssee Refs. 4–7d. In the opposite casesslow ordering processd,
the characteristic time of the ordering enters evolution equa-
tions explicitly, thus bringing additional complexity to the
analytical description of the system. The dissipation rate is
described by a set of kinetic coefficients. The crossover be-
tween the two regimes is determined by the probe area size
sfor a given value of the interaction parameterd. The collec-
tive diffusion controls the decay of fluctuations only in the
case of sufficiently large probe areas.

Our paper presents an analysis of the particle density fluc-
tuations for a specifically ordered lattice-gas system. It is
shown that in the general case the fluctuation method cannot
be employed directly for obtaining a collective diffusion co-
efficient. In what follows we show limiting cases when our
approach is reduced to the traditional one.

II. MASS TRANSPORT CONTROLLED BY JUMPS
OF DEFECTS OF THE ORDERED STRUCTURE

AND THE LANGEVIN SOURCES OF FLUCTUATIONS

Our model deals with a square lattice-gas system. As an
example, we consider a case of the ordered lattice-gas with
square symmetry and repulsive nearest-neighborsNNd inter-
actions. The ordering is caused by second order phase tran-
sition, when the lattice of equivalent adsorption sites is di-
vided into two sublattices. The ordering takes place in the
vicinity of half-coveragesu<1/2d. Figure 1 shows sche-
matically this system. Two types of defects, i.e., vacancies in
the almost filled sublattice and “excess” particles in the al-
most empty sublattice, are responsible for transport phenom-
ena. Average concentrationssper sited nv,e of both defect spe-
cies were calculated in Refs. 5 and 6. They are given by

nv,e = 7 su − 1
2d + Îsu − 1

2d2 + e−4w, s1d

wherew is the interaction energy between two nearest neigh-
bors. Equations1d together with the defect jump probabilities

determines the state of the system and particle migration in
it. It was shown previously5–7 that any defect jump occurs as
a pair of strongly correlated jumps of individual adatoms to
elementary distancesa1 and a2, where vectorsa1,2 connect
NN sitesssee Fig. 1d. The probability of individual particle
jump selementary jumpd from filled site i to NN empty sitej
is assumed to be given by a jump frequency

ni j = n0 expfeig, s2d

wheren0 is a constant, andei is the interaction energy of the
ith particle with NN particles. It is given byei =woNNnm,
wherew is determined in units ofkT, andnm=s1,0d is the
occupancy number of themth site, which is a NN of theith
site.

Thus the jump probability is assumed to be independent
on the energy of the arrival statej . This practice is com-
monly used in modern Monte Carlo simulationssinstead of
the traditionally usedMETROPOLISalgorithm which uses the
difference in the energy between the initial and the final
stated. It has been shown8 that similar results for the domain
size evolution are obtained for the two types of algorithms,
but the single site energy algorithm has been suggested9 to
describe the kinetics more faithfullysit is believed to be a
more realistic representation of the diffusive dynamics in ex-
perimental systems, although it is slower than theMETROPO-

LIS algorithmd. Also, Refs. 10–12 should be mentioned here
in which the effect of a saddle point displacementsdue to
adatom-adatom interactiond on the diffusion coefficient was
studied.

The probabilities per unit time of the vacancy and excess
particle to jump to distances=a1+a2 are given by1

2n0 and
1
2n0e

w; 1
2n1, respectively. Hence the changes of the occu-

pancy numbers of both defect types for small time interval
Dt may be written in the form of balance conditions as

ni
est + Dtd − ni

estd
Dt

= −
1

2
n1o

hsj
sni

e − ni+s
e d,

ni
vst + Dtd − ni

vstd
Dt

= −
1

2
n0o

hsj
sni

v − ni+s
v d. s3d

As previously, vectors is given bys=a1+a2, and the sum-
mation is over all possible orientations ofa1,2 excludinga1
=−a2.

Equationss3d describe the average probability for a set of
variableshni

e,vj to be changed during timeDt. Fluctuations of
the number of jumps between any two sites are ignored in
Eqs. s3d. At the same time, we intend to study fluctuations.
Hence we should complement these equations with the cor-
responding fluctuation terms, i.e., with the Langevin sources.
To do this, it is useful to represent the exact number of defect
jumpsKi,i+s

e,v from site i to site i +s for time Dt as

1

Dt
Ki,i+s

e,v =
1

2
n1,0ni

e,v +
1

Dt
dKi,i+s

e,v , s4d

wheredK is a fluctuation of the number of jumps by defini-
tion. The employing of Eq.s4d modifies the balance condi-
tions for occupation of a given site by defects to a form

FIG. 1. Representation of 2D square lattice-gas model in the
vicinity of half coverage. Black and white circles indicate occupied
and unoccupied lattice sites. The ideal ordering is distorted by the
presence of two types of defectssan excess particle and a vacancy
are shown by arrows in sites 1 and 2, respectivelyd.
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which is similar to Eqs.s3d but with the difference that the
Langevin sources,Ji

ex,vstd, appear in the right side parts

ni
est + Dtd − ni

estd
Dt

= −
1

2
n1o

hsj
sni

e − ni+s
e d + Ji

exstd,

ni
vst + Dtd − ni

vstd
Dt

= −
1

2
n0o

hsj
sni

v − ni+s
v d + Ji

vstd; s5d

Eqs. s5d give a more general form of the balance equations
suitable for studying fluctuations in the system.

The sources are defined in terms of fluctuations of the
number of jumps as

Ji
e,vstd = −

1

Dt
o
hsj

fdKi,i+s
e,v − dKi+s,i

e,v g, s6d

where the first term in square brackets is due to jumps from
the ith site to sitei +s and the second term describes the
fluctuations of the backward jumps.

To study fluctuations it is sufficient to know the correla-
tion function of the Langevin sources. The analysis is facili-
tated considerably in view of the fact that defect jumps may
be considered as statistically independentsuncorrelatedd in
the case of a rarefied defect gas. In this case, a procedure
described in Ref. 13 is applicable. The absence of correlation
between different jumps means that only correlation of the
same jumps takes place, i.e.,

sDtd−2kdKi,i+s
e,v stddKi8,i8+s8

e,v st8dl ~ dst − t8ddi,i8ds,s8. s7d

The proportionality coefficient in the right-hand part of Eq.
s7d may be easily calculated in view of the fact that the
number of jumps between two sites for a small time interval
Dt is equal to 0 or 1. The probability of two jumps is negli-
gible. This results in

ksKi,i+s
e,v d2l < kKi,i+s

e,v l = Dt
1

2
n1,0n

e,v. s8d

Making use of Eqs.s6d–s8d results in the following expres-
sion for the Langevin correlator:

kJi
e,vstdJi8

e,vst8dl = n1,0n
e,vdst − t8do

hsj
sdi,i8 − di,i8−sd. s9d

In the wave-vector domain, Eq.s9d is transformed to

kJe,vstdJe,vst8dlk = 2ne,vDe,vk2dst − t8d, s10d

where Fourier transformation with respect to variablei − i8 is
defined by

fk = o
i−i8

eiksi−i8dfsi − i8d, s11d

and summing up is over all sites of the corresponding sub-
lattice.

Equation s10d is derived consideringka to be a small
quantity. Also, we have introduced the new quantityDe,v

=4n1,0a2, which stands for diffusion coefficient of excess
particlessed and vacanciessvd. Herea is the lattice constant
shown in Fig. 1.

In thek-representation, balance equations for fluctuations
of the occupancies in both sublattices are given by

]tdnk
e,v = − De,vk2dnk

e,v + Jk
e,vstd, s12d

wherednk
e,v is a Fourier transform of the fluctuation of the

defect occupancy numberni
e,v−ne,v. For the sake of brevity,

we have employed a symbol of derivative]t in the left part
of Eq. s12d. Besides that, similarly to Eq.s10d, we have
retained the terms only quadratic inka.

As we see, the problem of fluctuations is reduced to the
solution of two diffusion equations with statistically indepen-
dent source terms. Hence, even in this simple case, fluctua-
tions of the adsorbate density are characterized by two very
different quantitatively diffusion coefficientsDe andDv. This
is in contrast to the case of disordered lattice gas.

The physical picture described above is not complete. It
does not include effects of defect recombination and thermal
generation. It is evident that the encountering of a vacancy
and an excess particle results in their annihilation. Also, a
pair of the defectssexcess particle-vacancyd may be gener-
ated in the course of three strongly correlated adatom jumps.
Three possible paths are shown schematically by arrows in
Fig. 1. Initially, a particle occupying siteX is displaced to
empty siteA. In this new configuration, a particle occupying
site B may be displaced with small probability to one of the
free sitesC, D, or E. Then theA→B jump accomplishes the
formation of the defect pair when a vacancy is in siteX and
an excess particle is in one of the sitesC,D ,E. The prob-
ability of each path was calculated in Refs. 5–7 for two- and
three-dimensional lattices.

Hence Eqs. s12d should be complemented with the
generation-recombination termG−R and with the corre-
spondingg−r Langevin source term. The linearizedG−R
term is given by6,7

G − R= 28n1snednk
v + nvdnk

ed. s13d

A system of equations for defect fluctuations, which takes
into account the generation-recombination processes, is
given by

ivdne = − Dek2dne − Gsdnenv + dnvned + Je + sg − rd,

ivdnv = − Dvk2dnv − Gsdnenv + dnvned + Jv + sg − rd,

s14d

whereG=28n1. Fourier transform with respect to time vari-
able is used in Eqs.s14d. This results in changing]t→ iv.
Moreover, all fluctuating quantities in Eqs.s14d have to be
considered as functions of the frequencyv and the wave
vector k. The correlation function of the Langevin sources
may be expressed in terms of physical values, which enter
Eq. s13d. It is given by

ksg − rdtsg − rdt8lk = 56n1dst − t8dnenv. s15d

As we see, in the presence of generation-recombination
sGRd processes, fluctuations of different defect types become
interconnected. The GR term takes into account the relax-
ation mechanism responsible for establishing local equilib-
rium in the defect system. Also, it can be interpreted as the
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one determining the relaxation of the order parameter varia-
tions. When the GR term is dominating in Eqs.s14d, a solu-
tion of Eqs.s14d must satisfy the condition of local equilib-
rium dnenv=−dnvne. The importance of the GR term depends
on the value of the wave vectork and the average values of
ne,v. For estimation, let us consider the most important case
whenk is of the order of reverse size of the probe area,l−1,
and ne<nv. It is just the range ofk, which gives major
contribution to fluctuations of the number of particles in the
probe area. Hence the GR term is dominating whenGne

.Dek2. Taking into account the relationnenv=e−4w, which
follows from Eq.s1d, we may easily see that the GR term is
important when the characteristic distance between defects is
of the order or less than the size of the probe area.

Concluding this section, our qualitative analysis includes
size effect in the phenomenon of adsorbate fluctuations. In
what follows, we analyze this point in more detail, both ana-
lytically and numerically.

III. FLUCTUATIONS IN PROBE AREA

A system of linear equationss14d may be easily solved
with respect to functionsdne,v. When these quantities are
known, we may return to spatiotemporal variables and obtain
fluctuations of the number of particlesdN in a given probe
areaS, which includes 4l2 lattice sites. Thus we have

dNstd =
2

NT
o
k
E

−`

+` dv

2p
eivt

3Fo
iPS

e−ikidnesk,vd − o
jPS

e−ikj dnvsk,vdG , s16d

where sitesi and j belong to different sublattices, andNT is
the total number of lattice sites in the system.

As previously, the conditions of spatiotemporal unifor-
mity of fluctuations are assumed. This imposes the following
restriction on the correlation function of any fluctuating
quantity fsr ,td14

kfv,k fv8,k8l = pNTdk,−k8dsv + v8dkf2lv,k . s17d

Taking into account Eqs.s10d ands14d–s17d, we can eas-
ily obtain the analytical term for the particle number fluctua-
tions in the probe area. It is given by

kdNstddNs0dl ; kdNstd2lt

=
2

NT
o
k

Skx
SkyE

−`

+` dv

2p
eivtksdne − dnvd2lk,v,

s18d

where

Skx,y
= 2Fsinskx,ylad

kx,ya
G2

s19d

and

ksdne − dnvd2lk,v = 2k2 3
v2sneDe + nvDvd + k2sDe − Dvd2Gnenv + neDesDvk2 + Gnd2 + nvDvsDek2 + Gnd2

hv2 − k2fDeDvk2 + GsDene + Dvnvdgj2 + v2fsDe + Dvdk2 + Gng2 , s20d

wheren=ne+nv.
The intergrand has two pairs of symmetric poles in com-

plex planev. These poles are located at the imaginary axis.
It is straightforward to integrate analytically overv by em-
ploying the residue theorem. The integration contour should
be closed at infinity in the upper half plane in the case oft
.0 and in the lower half plane whent,0. As a result, we
will get two terms with different decay laws:

E
−`

+` dv

2p
eivtksdne − dnvd2lk,v

= e−g1utufksdne − dnvd2lk,vsv − ig1dgv→ig1

+ e−g2utufksdne − dnvd2lk,vsv − ig2dgv→ig2
, s21d

whereg1,2 are positive functions ofk. The explicit form of
these values may be easily obtained by employing Eq.s20d.
They are given by

g1,2=
1

2
sA ± ÎA2 − B2d, s22d

where A=fsDe+Dvdk2+Gsne+nvdg and B2=4k2fDeDvk2

+GsDene+Dvnvdg.
It follows from Eq. s21d that two different relaxation

times govern the decay of fluctuations. The diffusion coeffi-
cients of both defect types as well as the recombination pa-
rameterG determine evolution of fluctuations. The relaxation
times have very simple physical interpretation in the case of
a small value of recombination rateGn as compared to the
diffusion rate:Dek2@Gn. Puttingne=nv, we have

E
−`

+` dv

2p
eivtksdnex− dnvd2lk,v < nefe−Dek2utu + e−sDvk2+Gndutug.

s23d

Equations23d exhibits three different relaxation mechanisms.
The first term in square brackets describes fast diffusion of
the excess particles. The second term describes slow diffu-
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sion of vacancies accompanied with recombination of the
defects. The traditional theory yields exponential dependence
e−Dck

2utu only, where the collective diffusion coefficientDc is
given in our case by5,6

Dc =
Dene + Dvnv

ne + nv . s24d

As we see, neitherg1 nor g2 are equal toDck
2.

In the opposite limitDek2!Gn we return to the traditional
behavior of fluctuations. In this case the right-hand part of
Eq. s21d is reduced tosne+nvde−Dck

2utu, i.e., to the result fol-
lowed from diffusion-controlled fluctuation theory. The rea-
son is quite understandable. This limit corresponds to the
physical picture where a local equilibrium is established due
to fast generation-recombination processes.

It is evident that the relative contribution of fluctuations
with a given wave vectork to the correlation function of Eq.
s18d depends on time differencet and the size of the probe
areal. With the increase ofl or utu the actual range of wave
vectors scentered atk =0d is decreased and the traditional
theory becomes applicable for the description of fluctuations.

IV. COMPARISON OF ANALYTICAL WITH MONTE
CARLO DATA

Simulations of the particle migration were executed in a
lattice-gas system of 2003200 sites. Probe areas imbedded
in the whole lattice are oriented as shown in Fig. 1. We
studied two sizes of probe areas, 20320 and 636. We
simulate random jumps of individual particles. The depen-
dence of jump probabilities on the occupancy of the adjacent
sites was determined by Eq.s2d. Time was monitored in units
of MC stepssMCSd. In the course of one MCS each lattice
site is interrogated onceson averaged for the probability of a
particle jump out of it. One MCS was chosen to correspond
to f4n0se2w+1dsew+1dg−1<1/4n0e

−3w of time.

The preparation of the initial state of the system consisted
of three important points. We started from an ordered, check-
board, arrangement of the particles. Then we introduced ran-
domly the defectssvacancies and excess particlesd, the num-
ber of which was calculated according to Eq.s1d. After that,
the particles were allowed to move randomly for 50 000 MC
steps. This procedure ensures the lack of forming of domain
walls in the system and allows it to reach a state of equilib-
rium, where there is essentially a homogeneous distribution
of the defects. We have verified this visually, through snap-
shots of the system taken in various periods of time, from the
initial state and for every 1000 MCS, for all the interaction
parameters we have used. The study of fluctuations due to
particle migration was started only after 50 000 MC steps. To
get a correlation function, we have averaged over many in-
dependent runss200 000 runs for the case of the 636 probe
area and 50 000 runs for the case of the 20320 probe aread.

Figure 2 shows the dependence of the correlation function
on time. The case of half coveragesu=0.5d is considered.
MC and analytical data given by Eqs.s18d and s20d are
shown in symbols and solid lines, respectively. In general,
we see a good quantitative agreement of both approaches. A
noticeable discrepancy in the range of small times may be
easily understood. It is the time interval where the valuen0,1t
is not largesn0,1tø1d and fluctuation phenomena should be
described through kinetic theory but not by means of hydro-
dynamic equationss14d. In other words, the applicability of
Eqs.s14d is doubtful in this range.

Also, we consider fluctuations atu somewhat higher than
0.5. It is the coverage wherene/nv=ew. In its explicit form it
is given byu=0.5+e−2w sinhw /2. The results are shown in
Figs. 3 and 4. The discrepancy between the theoretical and
MC data is of the order of 10%–20%. But the difference
between the two becomes much less evident when we take
into account the contribution of dimer configurations of ex-
cess particles to mass transport. Each dimer consists of a pair
of corresponding defects, which are occasionally NN or next
NN in the almost empty sublatticessee more details in Refs.

FIG. 2. Time dependence of the cor-
relation function divided by the number
of sites in probe area foru=0.5 andw
=2.41. Time is monitored in units of
Monte Carlo steps. Symbols denote MC
data, solid and dashed lines are obtained
from Eq. s18d. Dashed lines are obtained
with the dimer jumps accounted for.
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6, 7, and 15d. The modification of our theory in order to take
into account the contribution of dimer configurations is re-
duced to changing the diffusion coefficient of excess par-
ticlesDe by the formDes1+ 4

3ewned. The increase ofDe due to
dimer contribution in cases ofw=2.41 sFig. 3d and w=3
sFig. 4d amounts to 40% and 30%, respectively. The corre-
sponding analytical data for fluctuations shown in Figs. 3
and 4 are also different. A good agreement between the
theory and computer simulations is observed only in the case
where dimer jumps are accounted forsdashed linesd. sSimi-
larly to the case ofu=0.5, a noticeable disagreement of ana-
lytical and MC curves for areas of 636 sites in the early
time domain can be seen.d

The contribution of dimer displacements to fluctuations is
not significant atu=0.5. We see in Fig. 2 that the dashed line
is almost merged with the solid one for large size areas of
20320 sites and is very close to the solid lines for the probe

area of 636. It is because the dimer concentration is very
low at this specific coveragesof the order ofe−4w per sited,
which corresponds to maximum ordering of the lattice-gas
system.

Up to here, we have considered the contribution of high-
probability defect jumps to diffusion. The corresponding
jump frequencies were given by12n0 for vacancy jumps,12n1

for excess particle jumps, and13n2 for dimer jumps. The mass
transfer in the course of GR jumps was tacitly ignored in
spite of the fact that any GR jump is undertaken as a result of
adparticle displacements in three lattice constants. The effect
of adparticle displacements in the course of recombination
jumps may be considered by introducing additional diffusion
terms to the equations for fluctuations, Eqs.s14d. The scheme
of derivation of the additional terms is outlined in Ref. 7 for
the three-dimensional lattice and will not be repeated here.
The modified equations are given by

FIG. 3. The same as in Fig. 2 foru
= 1

2 +e−2w sinhw /2 andw=2.41.

FIG. 4. The same as in Fig. 3 forw
=3.
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ivdne = − Dek2dne +
39

28
Ga2k2nednv − Gsdnenv + dnvned

+ Je + sg − rde,

ivdnv = − Dvk2dnv +
39

28
Ga2k2nvdne − Gsdnenv + dnvned

+ Jv + sg − rdv. s25d

The additional terms in the right-hand parts of Eqs.s25d are
of no importance at large values of the interaction parameter
w. For example, atu=0.5 andw=2.41 these terms being
proportional toe−w!1 may be disregarded. At the same
time, they become competitive at comparatively small values
of w sbut still greater thanwcd due to the large numerical
coefficient. A large value of the coefficient arises from the
many possible paths, by which the recombination of a given
defect may occur.

GR jumps modify the collective diffusion coefficientDc,
which is no longer determined by Eq.s24d. The collective
diffusion coefficient may be obtained from Eqs.s25d by the
method described in Ref. 7. It is given by

Dc =
Dene + Dvnv + 78n−3a

2

ne + nv , s26d

where n−3=n0e
−3w. Besides that, the GR source of fluctua-

tions in the first of Eqs.s25d is different from that in the
second equation. This is in contrast to Eqs.s14d, where the
same GR sources are involved in both equations. The differ-
ence is explained by the nonlocality of each GR event. The
nonlocality means that the defects in any generated or re-
combined pair are spaced in three lattice constantsssee ex-
planations to Fig. 1d. Therefore the corresponding sources
are notd-correlated in a spatial domain. Hence the correla-
tors differ from those given by Eq.s15d. Repeating the argu-
ments employed for derivation of Eq.s10d, we find

ksg − rdt
e,vsg − rdt8

e,vlk = 2Gnenvdst − t8d,

ksg − rdt
esg − rdt8

v lk = 2Gnenvdst − t8dS1 −
39

28
a2k2D .

s27d

The right-side term in the second Eq.s27d, which is depen-
dent onk, arises from the small nonlocality described above.

The solution of the system of Eqs.s25d is similar to the
solution of Eqs.s14d. The complication of equations for fluc-
tuations and modification of the GR Langevin sources given
by Eqs.s27d does not introduce principal difficulties in cal-
culations of the correlation functionkdN2lt. The results are
shown in Fig. 5 foru=0.5. A distinct effect of the nonlocality
of GR jumps on fluctuations for a small value of the inter-
action parametersw=1.86d can be seen. A good agreement of
the theory and MC simulations is reached within the theory
of nonlocal GR processes only. Thus it may be concluded
that MC simulations help in pointing out the necessary modi-
fications of the theory. Also, Fig. 5 shows that our analytical
calculations are sufficiently accurate even close to the phase
transition sthe interaction parameter used in Fig. 5 is only
5.5% greater than the critical value,wc<1.76d. This is be-
cause the defect concentration is still low, in spite of the
proximity of w to the critical value. It follows from Eq.s1d
that the defect number amounts for only 2.4% from the total
number of lattice sites in this case.

We have also considered fluctuations at a specific cover-
age,u=0.5−e−2w sinhw /2, wheresne/nvd=e−w. It is the cov-
eragessymmetric to the case shown in Figs. 3 and 4d where
the adatom mobility has a deep minimum.16 Hence the influ-
ence of nonlocality on the collective diffusionfi.e., the con-
tribution of the third term in the numerator of Eq.s26dg is the
most significant. A similar strong effect on fluctuations may
be expected. We see in Fig. 6 that the difference between
data obtained from the two versions of the theory reaches
30% in some regions. Figure 6 shows a good agreement of

FIG. 5. The same as in Fig. 2 for cov-
erageu=0.5 andw=1.86. Dashed lines
show theoretical results with account for
particle displacements in the course of
GR jumps.
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MC simulations with the version of the theory accounting for
the nonlocal nature of GR events.

Figures 2–6 explain the details of adatom kinetics, which
may be studied by the comparison of MC and analytical data.
At the same time it is not clear how these results compare to
the ones given by the traditional approach, which is based on
the diffusion equation. For practical purposes, it is important
to know the range of the validity of the traditional method.
To compare the two, we will express the correlation function
obtained by the traditional theory in a form, which is similar
to Eq. s18d. It is given by

kdN2lt = kdN2lt=0
a2

4p2l2
E dkxdkySkx

Sky
e−Dck

2utu

= kdN2lt=0I
2std, s28d

wheret= utuDcslad−2,

Istd =
2

p
E

0

`

dxSsinx

x
D2

e−tx2
.

We can see from Eq.s28d that the normalized correlation
function of fluctuationskdN2lt / kdN2lt=0; I2std is a universal
function of dimensionless timet only. In other words, this
function depends on the size of the probe area and the col-
lective diffusion coefficient not separately, but via the com-
bination definingt. The asymptotic value ofI2std is given by
1/sptd for t@1; whent=0 we getI2=1.

It is straightforward to obtain the ratiohstd
;kdN2lt / kdN2lt=0 for our model of the ordered lattice-gas. A
value of

kdN2lt=0 = 2l2sne + nvd s29d

should be substituted there. In the case of noninteracting
lattice-gaskdN2lt=0=4l2us1−ud. The ratioh may be plotted
as a function oft, thus providing direct comparison with the
universal functionI2std. Figure 7 illustrates the ratiohstd for
a set of interaction parameters and sizes of probe areas. The
case whereu=0.5 is considered. The curveI2std almost co-

incides with that forw=2 and a probe area of 20320 sites.
At the same time, we see that the increase ofw or decrease of
l results in significant discrepancy between our theory and
the traditional approach.

Similar graphs for MC data are shown in Fig. 8.kdN2lt=0

was determined by Eq.s29d. To obtaint, we have used the
theoretical value of the collective diffusion coefficient given
by Eq. s24d. Similarly to the previous figure, we see consid-
erable deviations of MC data from the universal curve.
Moreover, MC graphs have no tendency of merging att
→0. This is in accordance with the observation that hydro-
dynamic description of fluctuations is not applicable to the
adatom system at small times.

The asymptotic values ofh st→`d coincide with the
ones given by the traditional approach. This can be easily
explained. It is the case where only small-value wave vectors
contribute to the correlation function of Eq.s18d. Hence the
diffusion terms in Eqs.s14d and s25d are small when com-
pared to GR terms. Thus the local equilibrium is established
in the defect system and the decay of fluctuations is gov-
erned by the diffusion equation, which contains a collective
diffusion coefficient as the unique relaxation parameter.

It should be emphasized that the correlation function is
very small just at large values oft. Hence, in the case of
highly ordered lattice-gas, obtainingDc from asymptotic MC
data is very problematic, if possible at all.

Figures 7 and 8 show that the traditional fluctuation
method is not applicable to the ordered lattice-gas, where
transport phenomena are controlled by the migration of
structural defects of different types. A similar conclusion fol-
lows from the paper of Gomer and Uebing.17 They have
simulated migration in a lattice-gas system undergoingps2
31d ordering. It was shown that in the range of ordering, the
diffusion coefficients obtained within the Cubo-Green ap-
proach are very different from those obtained by the fluctua-
tion methodssee Figs. 13–15 in Ref. 17d.

Also, Refs. 18 and 19 should be mentioned. The tradi-
tional version of fluctuation method was employed there for
obtaining the collective diffusion coefficient. We find a dras-

FIG. 6. The same as in Fig. 5 for coverage
u= 1

2 −e−2w sinhw /2 andw=2.
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tic disagreement of our data with the results of Refs. 18 and
19 in the range of high ordering. For example, whenu=0.5
and the interaction parameterw is nearby 3, the diffusion
coefficientDc given by Eq.s24d is smaller by an order of
magnitude than the diffusion coefficient obtained in Refs. 18
and 19srespectively, Figs. 6 and 8 thered. The reason for this
strong disagreement may be due to inadequate employing of
the fluctuation method in the cited papers.

V. CONCLUSION

Concluding, we have studied density fluctuations in a sys-
tem with strong particle-particle interactions, where kinetic
coefficients and correlation functions may be obtained ana-
lytically with good accuracy. Thus it becomes possible to
compare in detail the results of MC simulations with the
corresponding theory. The agreement ensures the adequacy
of the theoretical method we have used. We have analyzed

the information about dissipative processes that is contained
in the correlation function of fluctuations. This study may be
useful for practical utilizing of the fluctuation method as an
important tool of adsorbate diagnostics.

Our analysis shows the distinct peculiarities of fluctuation
processes in the ordered system. The decay of fluctuations
occurs in a more complicated manner than in the disordered
case. It is shown that a direct use of the fluctuation method
for the determination of diffusion coefficient from real ex-
periments or MC simulations cannot be certain in the general
case. On the other hand, the fluctuations contain information
about any dissipation mechanism in the adatom system and it
is possible to use the fluctuation studies for obtaining physi-
cal quantities describing relaxation. Our consideration ex-
plains how it can be done in specific cases. For example, the
Fourier transform of the correlation function in Eq.s23d is
represented by two terms with different relaxation param-
eters. It is a straightforward procedure to calculate this Fou-
rier transform from computer simulations of particle migra-

FIG. 7. Theoretical dependence of normalized
correlation function on the dimensionless timet
ft= utuDcslad−2g. The plotI2std sthick solid lined is
almost merged with the curve forw=2, 2l =20
sthin solid lined.

FIG. 8. MC data for normalized correlation
function are denoted by symbols. The plotI2std is
shown for comparison.
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tion and get both functions. In such a way, any of the three
quantitiesDe, Dv, andG could be obtained by means of MC
simulations only. The collective diffusion coefficient may be
obtained in the usual way for sufficiently large probe areas
and not too large an interaction parameterssee discussion of
the results shown in Figs. 7 and 8d.

The theoretical approach used here is not applicable in the
range of very small times and very small probe areas, where
hydrodynamic Eqs.s14d and s25d are not applicable. This
case requires a more general consideration, which does not
imply the valueka to be small. Our future work will cover
this range, in order to attain the quantitative agreement be-

tween analytical and MC data at small times, which is still
beyond our approach.

The model of particle jumpsfsee Eq.s2dg may be modi-
fied to take into account both the saddle-point effect and the
energy of the final state. Such generalization may be done
with ease as well as the consideration of lattice-gas systems
with another symmetry.
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