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Fluctuations in an ordered c(2X 2) two-dimensional lattice-gas system with repulsive interactions
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Fluctuations of the particle density in an orde®@ X 2) two-dimensional lattice-gas system are studied
both analytically and by means of Monte Carlo simulations. The ordering is caused by a strong interparticle
repulsive interaction resulting in the second order phase transition. The lattice of adsorption sites is divided into
two sublatticegalmost filled and almost empty sublattitesch of which contains a small number of structural
“defects,” i.e., vacancies and excess particles. The relaxation of the correlation function of fluctuations turns
out to be governed by two different functions. This peculiarity is to be contrasted with the traditional fluctua-
tion theory which predicts the existence of a single damping constant, determined by the collective diffusion
coefficient. A specific thesis of the proposed approach is that transport phenomena in ordered systems may be
described in terms of both displacements and generation-recombination of structural defects. Accordingly, the
correlation function of fluctuations depends on diffusion coefficients of two defect species as well as on the
generation-recombination frequency. Our theory reduces to the usual one when fluctuations occur under local
equilibrium conditions, i.e., for a sufficiently large size of probe areas and not too great values of interaction
parameter. The analytical results agree well with those obtained in the Monte Carlo framework.
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[. INTRODUCTION used to measure the diffusion coefficient by means of moni-
ring the current fluctuations on the fiBimilar to the FE
icroscopy, the STM technique is based on the expectation
at any changes in particle density under the tip should in-
&uce fluctuations in the measured tunneling current.
Additionally, numerical investigations of fluctuations in
robe areas can be used for obtaining diffusion coefficients
¥ computer simulations of the adsorbate migration. All
methods described above deal with microscopically small
probe areagof the order of 100 A in the case of FE micros-

) ic f hich return th tom t copy, 10 A or less in the case of ST microscopy, and of the
cause microscopic lorces, which return the system 10 €qulg, o of ten |attice constants in the case of Monte Carlo

librium. It is evident that the corresponding_ rg!axa;ion IOro'(MC) simulationg. Thus the question about the validity of
cess does not depend on the nature of the initial disturbangge jitfusion equation for such small sizes may arise.

(whether it is thermally generated or caused by external apgiher aspect of the problem is connected with the
forces. Hence studies of fluctuations may be used for obparticle-particle interactions. In the case of large interaction
taining kinetic coefficients. parametergor low temperatureand suitable adsorbate con-

In the presence of external electric fields, adsorbate fluccentration, the adatom system undergoes a phase transition.
tuations generate electric nois¢for example, noises of |n what follows, we consider the case of second order phase
emission current in field emission microscof®EM) or tun-  transition when a lattice of adsorption sites is divided into
nel current in scanning tunnel microscof$TM)]. Hence two sublattices with different average occupation numbers.
experimental measurements of the current-current correlatioklacroscopically, this system may be considered as homoge-
function may provide valuable information about the adsorneous. At the same time, the relaxation of concentration fluc-
bate fluctuations. Usually, it is assumed that the collectivduations behaves in a somewhat different way compared to
diffusion coefficient is a unique physical quantity, which the disordered case. During the fluctuation relaxation two
governs the decay of these fluctuations. Such consideratiaiistinct physical processes take place. Any local fluctuation
looks quite reasonable in the case of a spatially homogeaf concentration is redistributed between two sublattices,
neous adatom system when the characteristic size of th#us forming a local equilibrium. The characteristic time of
probe area is much greater than the correlation length detelecal equilibration is equal to that of the orderitdjsorder-
mined by adatom-adatom interaction. ing) time of the adsorbate structure. Along with the local

A simple method of obtaining collective diffusion coeffi- ordering, the adatom flux induced by the concentration gra-
cient based on measurements of the correlation function alient occurs. The flux intensity depends essentially on
emission-current fluctuations was developed and widely usedhether or not local equilibrium has been established. When
in practice(see, for example, surveys of Gorhand BartR). the ordering-disordering process is fast enough, the mass
Its theoretical foundation has been given in Ref. 3. Later onfransport is governed by the usual diffusion equation, which
a real-time technique employing ST microscopy has beeis determined only by the collective diffusion coefficidht

This paper is concerned with the theoretical description of0
a complex phenomenon, namely, fluctuations in ensembl
of particles adsorbed on a crystal surface. A regular particl
flow is realized as a sequence of random displacements
individual particles. As a result, fluctuation characteristics in
adsorbate layers and kinetic coefficients, which describ
macroscopic transport of the adsorbate, are interconnected
having the same origin. The fluctuatiofise., spontaneous
deviations of physical quantities from their average values
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Probe area 4x4 determines the state of the system and particle migration in
’ it. It was shown previousfy’ that any defect jump occurs as

a pair of strongly correlated jumps of individual adatoms to

elementary distances; anda,, where vectorsa; , connect

NN sites(see Fig. 1 The probability of individual particle

jump (elementary jumpfrom filled sitei to NN empty sitej

is assumed to be given by a jump frequency

vij = vo exd g1, (2)

wherey, is a constant, and is the interaction energy of the
ith particle with NN particles. It is given by =@=\\Nm,
where ¢ is determined in units okT, andn,,=(1,0) is the
occupancy number of theth site, which is a NN of théth
site.

a Thus the jump probability is assumed to be independent
on the energy of the arrival staje This practice is com-
monly used in modern Monte Carlo simulatiotisstead of
the traditionally usedieTrROPOLIS algorithm which uses the

FIG. 1. Representation of 2D square lattice-gas model in théj'ﬁerence in the energy betv,ve?n the initial and the f!nal
vicinity of half coverage. Black and white circles indicate occupied SFaté' It ha_s been shov?rthat similar results for the domaln
and unoccupied lattice sites. The ideal ordering is distorted by thé1Z€ evolution are obtained for the two types of algorithms,

presence of two types of defed@n excess particle and a vacancy PUt the single site energy algorithm has been suggested
are shown by arrows in sites 1 and 2, respectively describe the kinetics more falthfu"@t is believed to be a

_ _ more realistic representation of the diffusive dynamics in ex-
(see Refs. 457 In the opposite cas@slow ordering process  perimental systems, although it is slower than METROPO-
the characteristic time of the ordering enters evolution equar g algorithm). Also, Refs. 10-12 should be mentioned here
tions explicitly, thus bringing additional complexity to the iy \which the effect of a saddle point displacemédtie to

analytical description of the system. The dissipation rate ig,qaiom-adatom interactibon the diffusion coefficient was
described by a set of kinetic coefficients. The crossover beg; gied.

tween the two regimes is determined by the probe area size g pronapilities per unit time of the vacancy and excess

(for a given value of the interaction parametérhe collec- particle to jump to distance=a,+a, are given by%vo and

g\ged:)f;u:l:?f?ci% ?1?[[;(1:régepfgg:éro;afslectuatlons only in the Svgef= 2y, respectively. Hence the changes of the occu-

Our paper presents an analysis of the particle density fludancy numbers of both defect types for small time interval

. o . At may be written in the form of balance conditions as
tuations for a specifically ordered lattice-gas system. It is

shown that in the general case the fluctuation method cannot ne(t + At) — n%(t) 1 e e
be employed directly for obtaining a collective diffusion co- At == 5”12 (N7 =ik,
efficient. In what follows we show limiting cases when our s}

approach is reduced to the traditional one.
ny(t+ At) —ni(t) 1 -
II. MASS TRANSPORT CONTROLLED BY JUMPS T == EVOE (n = ni\y). 3
OF DEFECTS OF THE ORDERED STRUCTURE {st

AND THE LANGEVIN SOURCES OF FLUCTUATIONS As previously, vectos is given bys=a;+a,, and the sum-

Our model deals with a square lattice-gas system. As afation is over all possible orientations af , excludinga,
example, we consider a case of the ordered lattice-gas with™32: ] .
square symmetry and repulsive nearest-neiglihidt) inter- Equations(3) describe the average probability for a set of
actions. The ordering is caused by second order phase traM@riables{n} to be changed during timét. Fluctuations of
sition, when the lattice of equivalent adsorption sites is dithe number of jumps between any two sites are ignored in
vided into two sublattices. The ordering takes place in theEds. (3). At the same time, we intend to study fluctuations.
vicinity of half-coverage(6~1/2). Figure 1 shows sche- Hence we should complement these equations with the cor-

matically this system. Two types of defects, i.e., vacancies if€Sponding fluctuation terms, i.e., with the Langevin sources.
the almost filled sublattice and “excess” particles in the al-To do this, it is useful to represent the exact number of defect

most empty sublattice, are responsible for transport phenomUMPs K from sitei to sitei +s for time At as
ena. Average concentratiofyger sitg n¥:€ of both defect spe-

. . . 1 1 1
cies were calculated in Refs. 5 and 6. They are given by EKﬁ'i'is: Evl,onie’l) + EéKﬁ'i‘is, (4)
P
ne= ¥ (6-3)+(0-3)*+e, 1)

where &K is a fluctuation of the number of jumps by defini-
whereg is the interaction energy between two nearest neightion. The employing of Eq(4) modifies the balance condi-
bors. Equatioril) together with the defect jump probabilities tions for occupation of a given site by defects to a form
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which is similar to Egs(3) but with the difference that the In the k-representation, balance equations for fluctuations
Langevin sources]™"(t), appear in the right side parts of the occupancies in both sublattices are given by

MErAY =0 1 e e )4 30y Gong" = = DSUIRZNE + JE(), (12

= ®_ne. Xt),

At 279 ' where onf" is a Fourier transform of the fluctuation of the
defect occupancy numbef*” -n®?. For the sake of brevity,

n(t+At)-n’(t) 1 we have employed a symbol of derivativgin the left part

At __EVOE (=i +F®; (5 of Eq. (12. Besides that, similarly to Eq(10), we have
s retained the terms only quadratic ka.
Egs.(5) give a more general form of the balance equations As we see, the problem of fluctuations is reduced to the
suitable for studying fluctuations in the system. solution of two diffusion equations with statistically indepen-

The sources are defined in terms of fluctuations of thedent source terms. Hence, even in this simple case, fluctua-
number of jumps as tions of the adsorbate density are characterized by two very

different quantitatively diffusion coefficient3® andDV. This

Je(t) = - i ST KL~ SKEL ], 6 s i$hcontras_t to the case of disordered lattice gas.

(s} e physical picture described above is not complete. It

does not include effects of defect recombination and thermal

where the first term in square brackets is due to Jumps froMyeneration, It is evident that the encountering of a vacancy
the ith site to sitei+s and the second term describes the,y an excess particle results in their annihilation. Also, a
fluctuations of the packvyard Jumps. pair of the defectgexcess particle-vacancynay be gener-

To study fluctuations it is sufficient to know the correla- ;i in the course of three strongly correlated adatom jumps.

tion functiqn of the _Lan_gevin sources. The analys_is Is facili-rp, o0 possible paths are shown schematically by arrows in
tated considerably in view of the fact that defect jumps MaYrig 1. Initially, a particle occupying sitX is displaced to

be considered as ;tatistically independé_uncorrelateﬁj in empty siteA. In this new configuration, a particle occupying
the case of a rarefied defect gas. In this case, a procedulge g'may pe displaced with small probability to one of the
described in Ref. 13 is applicable. The absence of correlatlonee sitesC, D, or E. Then theA— B jump accomplishes the
between different jumps means that only correlation of th&, mation of the defect pair when a vacancy is in sitand

same jumps takes place, i.e., an excess particle is in one of the si@sD,E. The prob-

(At)_2<5KF’ilis(t)5KﬁUir+sr(t')> o« St—-t)810sg. (7) ability qf each path was calculated in Refs. 5-7 for two- and
’ ’ T three-dimensional lattices.

The proportionality coefficient in the right-hand part of Eq. Hence Egs.(12) should be complemented with the

(7) may be easily calculated in view of the fact that the generation-recombination terr6—R and with the corre-

number of jumps between two sites for a small time intervaispondingg—r Langevin source term. The linearizég-R

At is equal to O or 1. The probability of two jumps is negli- term is given b§’

gible. This results in

G — R=28p,(n°on;, + n”any). (13
(KB %) ~ <Kie’iv+s>:At}V1 onev. (8) A system of equations for defect fluctuations, which takes
' ’ 2~ into account the generation-recombination processes, is
Making use of Eqs(6)<(8) results in the following expres- 9iven by
sion for the Langevin correlator: iwoN® = — DPK2ANE - T(Sn°n® + on°n®) + J°+ (g - 1),
FPOIM))y = vy 08t -t) 2, (85— Sirmg). (9
GO = vy o™X %( =g (9) iwdn’ == DUk?on” = T(n°n’ + on°n®) + IV + (g - ),
(14

In the wave-vector domain, E€Q) is transformed to

JEU(1) I8V (L)), = 2neDSUK2S(t — 1), 10 wherel'=28v,. Fourier transform with respect to time vari-
<. (DI . _ ( ) N ( .) able is used in Eq914). This results in changing;— i w.
where Fourier transformation with respect to variabie’ is Moreover, all fluctuating quantities in Eg&l4) have to be

defined by considered as functions of the frequeneyand the wave
i K(imie o vector k. The correlation function of the Langevin sources
fi= e fli-i"), (11) may be expressed in terms of physical values, which enter
i=i’ Eq. (13). It is given by
;r:t(;lczlljmmmg up is over all sites of the corresponding sub- ((g=1)(g= 1))y = 561, 8(t —t')nen’. (15)
Equation (10) is derived consideringka to be a small As we see, in the presence of generation-recombination

quantity. Also, we have introduced the new quanfdf{ (GR) processes, fluctuations of different defect types become
=4y, @% which stands for diffusion coefficient of excess interconnected. The GR term takes into account the relax-
particles(e) and vacancietv). Herea is the lattice constant ation mechanism responsible for establishing local equilib-
shown in Fig. 1. rium in the defect system. Also, it can be interpreted as the
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one determining the relaxation of the order parameter varia- 2 * dw

tions. When the GR term is dominating in Eq$4), a solu- ON(t) = N_E o ot

tion of Egs.(14) must satisfy the condition of local equilib- Tk

rium én®n’=-46n’n®, The importance of the GR term depends % [E e sne(k,w) - >, e Mon’(k,w) |, (16)
on the value of the wave vectérand the average values of ieS jes

n&v. For estimation, let us consider the most important case Lo . : : .
. ' . Where sites andj belong to different sublattices, amd is
whenk is of the order of reverse size of the probe aiej, J g

. . . . the total number of lattice sites in the system.
and nf=nv. It is just the range ok, which gives major 4

- . i ; As previously, the conditions of spatiotemporal unifor-
contribution to fluctuations of the number of particles in themity of fluctuations are assumed. This imposes the following
probe area. Hence the GR term is dominating whas

- e ) _ restriction on the correlation function of any fluctuating
>D% Taking into account the relation'n’=e"%, which  quantity f(r ,t)24

follows from Eq.(1), we may easily see that the GR term is e
important when the characteristic distance between defects is (Foxfor k) = TNt o Sl + " )T, k- (17

of the order or less than the size of the probe area. Taking into account Eq€10) and (14)—(17), we can eas-

_ Concluding this section, our qualitative analysis includesyy oiain the analytical term for the particle number fluctua-
size effect in the phenomenon of adsorbate fluctuations. 1§55 in the probe area. It is given by

what follows, we analyze this point in more detail, both ana-

lytically and numerically. (ON(t) N(0)) = (SN(t)?);
2 " dw
- = _elwt me_ éhv 2 ,
N oS f 5 € P
Ill. FLUCTUATIONS IN PROBE AREA (18)
A system of linear equationéld) may be easily solved Where
with respect to functionsh®’. When these quantities are sin(k,la) |2
known, we may return to spatiotemporal variables and obtain yo 2 —Lk 'a (19
fluctuations of the number of particle®N in a given probe %y
areaS, which includes # lattice sites. Thus we have and
|
2(n°De+ n’DY) + k*(D® - D?)’I'nn® + n°D&(DVK? + I'n)? + n’DY(D%? + I'n)?
(8 = a2y, = 22 x Al L (e + Ty + WDUDACH IS g

{w? - K[ D®DK? + I'(Dn® + D’n®) |}? + (D¢ + DV)k? + I'n]? '

wheren=nf+n". 1 3
The intergrand has two pairs of symmetric poles in com- Y127 E(Ai VA©-B9), (22)
plex planew. These poles are located at the imaginary axis.
It is straightforward to integrate analytically overby em-  where A=[(D®+D")k?+I'(n°+n’)] and B?=4k¥D®D k?
ploying the residue theorem. The integration contour shouldI"(D®n®+D?n*)].
be closed at infinity in the upper half plane in the case of |t follows from Eq. (21) that two different relaxation
>0 and in the lower half plane wher<0. As a result, we  times govern the decay of fluctuations. The diffusion coeffi-
will get two terms with different decay laws: cients of both defect types as well as the recombination pa-
rameterl” determine evolution of fluctuations. The relaxation
. times have very simple physical interpretation in the case of
J d_weiwt«&]e_ N2, a small value of recombination ralén as compared to the

o 27 diffusion rate:D®?>1I'n. Puttingn®=n?, we have
— A ‘tl e _ 2 o . 0
e [<(éh mv) >k,w(w |71)]w—>|y1 f+ d_weiwt«mex_ éhv)2>k o= ne[e—DekzM + e—(DUk2+Fn)|t\].
+ e (0= o)y (0= 1D)]0iy,, (2D) — 2 '

(23

where vy, , are positive functions ok. The explicit form of  Equation(23) exhibits three different relaxation mechanisms.
these values may be easily obtained by employing(EQ).  The first term in square brackets describes fast diffusion of
They are given by the excess particles. The second term describes slow diffu-
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0.008 — ———rrr ———rrr

0.007 6=2.41, 6=0.5, n°=n"

Dash lines - dimer

0.006 contribution is accounted for

0.005—: FIG. 2. Time dependence of the cor-
= ] relation function divided by the number
T 0.004 ] of sites in probe area fo#=0.5 and¢
71 ] =2.41. Time is monitored in units of
= 0003_3 Monte Carlo steps. Symbols denote MC
v data, solid and dashed lines are obtained

] from Eq.(18). Dashed lines are obtained

0.002 with the dimer jumps accounted for.

0.001 4

0.000 - '

1000 10000 100000
Monte Carlo steps

sion of vacancies accompanied with recombination of the The preparation of the initial state of the system consisted
defects. The traditional theory yields exponential dependencef three important points. We started from an ordered, check-
e DKl only, where the collective diffusion coefficiedt, is ~ Poard, arrangement of the particles. Then we introduced ran-
given in our case By domly the defectévacancies and excess partiglefie num-
ber of which was calculated according to Ef). After that,
Dén®+ D'n? the particles were allowed to move randomly for 50 000 MC
=T eaw (24) steps. This procedure ensures the lack of forming of domain
walls in the system and allows it to reach a state of equilib-
As we see, neithey, nor y, are equal td k. rium, where there is essentially a homogeneous distribution
In the opposite limiD®k?<I'n we return to the traditional of the defects. We have verified this visually, through snap-
behavior of fluctuations. In this case the right-hand part ofshots of the system taken in various periods of time, from the
Eq. (21) is reduced tdne+ n*)e Pl je., to the result fol- initial state and for every 1000 MCS, for all the interaction
lowed from diffusion-controlled fluctuation theory. The rea- Parameters we have used. The study of fluctuations due to
son is quite understandable. This limit corresponds to th@article migration was started only after 50 000 MC steps. To

physical picture where a local equilibrium is established dugJ€t & correlation function, we have averaged over many in-
to fast generation-recombination processes. dependent run€00 000 runs for the case of thex@ probe

It is evident that the relative contribution of fluctuations ar¢a and 50 000 runs for the case of the<ZD probe area
with a given wave vectok to the correlation function of Eq.  Figure 2 shows the dependence of the correlation function
(18) depends on time differendeand the size of the probe ©ON time. The case of half 'coverag6=0.5) is considered.
areal. With the increase of or |t| the actual range of wave MC and analytical data given by Eq&l8) and (20) are
vectors (centered ak=0) is decreased and the traditional Shown in symbols and solid lines, respectively. In general,

theory becomes applicable for the description of fluctuationsVé S€e a good quantitative agreement of both approaches. A
noticeable discrepancy in the range of small times may be

easily understood. It is the time interval where the valyig
IV COMPARISON OF ANALYTICAL WITH MONTE is notllarge(voylts 1). anq fluctuation phenomena should be
CARLO DATA descnped thrOl_Jgh kinetic theory but not by means qf_ hydro-
dynamic equation$l4). In other words, the applicability of
Simulations of the particle migration were executed in aEqgs.(14) is doubtful in this range.
lattice-gas system of 200200 sites. Probe areas imbedded Also, we consider fluctuations @somewhat higher than
in the whole lattice are oriented as shown in Fig. 1. We0.5. It is the coverage wheré/n’=¢¢. In its explicit form it
studied two sizes of probe areas, @200 and 6<6. We s given by #=0.5+e2¢sinh/2. The results are shown in
simulate random jumps of individual particles. The depen+igs. 3 and 4. The discrepancy between the theoretical and
dence of jump probabilities on the occupancy of the adjacentIC data is of the order of 10%—20%. But the difference
sites was determined by E@). Time was monitored in units between the two becomes much less evident when we take
of MC steps(MCS). In the course of one MCS each lattice into account the contribution of dimer configurations of ex-
site is interrogated ond®n averaggfor the probability of a  cess particles to mass transport. Each dimer consists of a pair
particle jump out of it. One MCS was chosen to corresponcf corresponding defects, which are occasionally NN or next
to [4vp(e29+1)(e9+1)] L~ 1/4vye 3¢ of time. NN in the almost empty sublattiqsee more details in Refs.

c ne+nv
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0.014 — —— ——rr

0.012 o b
$=2.41, 0=0.51225, n%/n"=e

Dash lines - dimer confribution
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0.008

FIG. 3. The same as in Fig. 2 fa

0.006 =3+e2%sinhe/2 and=2.41.

2. 2
<sN>/(41%)

0.004

0.002

0.000 ——rrry — e R
1000 10000 100000

Monte Carlo Steps

6, 7, and 15 The modification of our theory in order to take area of 6x6. It is because the dimer concentration is very
into account the contribution of dimer configurations is re-low at this specific coverag@f the order ofe™*¢ per site,
duced to changing the diffusion coefficient of excess parwhich corresponds to maximum ordering of the lattice-gas
ticlesD® by the formD®(1+3e¢n®). The increase ob®due to ~ System.
dimer contribution in cases ofp=2.41 (Fig. 3 and ¢=3 Up to here, we have considered the contribution of high-
(Fig. 4 amounts to 40% and 30%, respectively. The correprobability defect jumps to diffusion. The corresponding
sponding analytical data for fluctuations shown in Figs. 3jump frequencies were given léwo for vacancyjumps%v1
and 4 are also different. A good agreement between théor excess particle jumps, ar%d'z for dimer jumps. The mass
theory and computer simulations is observed only in the castansfer in the course of GR jumps was tacitly ignored in
where dimer jumps are accounted folashed lines (Simi-  spite of the fact that any GR jump is undertaken as a result of
larly to the case 06=0.5, a noticeable disagreement of ana-adparticle displacements in three lattice constants. The effect
lytical and MC curves for areas of>66 sites in the early of adparticle displacements in the course of recombination
time domain can be segn. jumps may be considered by introducing additional diffusion
The contribution of dimer displacements to fluctuations isterms to the equations for fluctuations, Es1). The scheme
not significant at¥=0.5. We see in Fig. 2 that the dashed line of derivation of the additional terms is outlined in Ref. 7 for
is almost merged with the solid one for large size areas ofhe three-dimensional lattice and will not be repeated here.
20X 20 sites and is very close to the solid lines for the probeThe modified equations are given by

0.006 ~—r—r—v—rrr —— —_—r

$=3, 6=0.5053, n® /n'=e*
Dash lines - dimer contribution
is accounted for

0.005

0.004

0.003
FIG. 4. The same as in Fig. 3 far

=3.

2 2
<sN*> /(417)

0.002

0.001 +

0.000

NI | ' ' L | ' ' L |
1000 10000 100000
Monte Carlo Steps
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-O"""'I i AL N AL |

$=1.86, 6=0.5, n°=n"
1~ O Dash lines - non-locality of
GR jumps accounted for

sites

FIG. 5. The same as in Fig. 2 for cov-
eraged=0.5 andp=1.86. Dashed lines
n show theoretical results with account for
| particle displacements in the course of
GR jumps.

<BN*>/N_

Ty
100000

Time (MC steps)

39 —r\8V(y — )oY\ — env Y
j0an® = = DA+ —_T'a?ieran’ ~ I(ann’ + on’ri {(@=ng =y =2 ot -,

+J°+(g-1)°, (g=n)@=1)pn=2Inn’ 8t - t’)(l - 2—:azk2> .

(27)

The right-side term in the second E@®7), which is depen-
(25) dent onk, arises from the small nonlocality described above.
The solution of the system of Eq&5) is similar to the

The additional terms in the right-hand parts of E(@®5) are solution of Egs(14). The complication of equations for fluc-
of no importance at large values of the interaction parametdit/ations and modification of the GR Langevin sources given
¢. For example, at#=0.5 and¢=2.41 these terms being PY Eqs.(27) does not introduce principal difficulties in cal-
proportional toe®<1 may be disregarded. At the same culations of the correlation functioN?),. The results are
time, they become competitive at comparatively small valueshown in Fig. 5 ford=0.5. A distinct effect of the nonlocality
of ¢ (but still greater thanp,) due to the large numerical of GR jumps on fluctuations for a small value of the inter-
coefficient. A large value of the coefficient arises from theaction parameteip=1.86 can be seen. A good agreement of
many possible paths, by which the recombination of a giverthe theory and MC simulations is reached within the theory
defect may occur. of nonlocal GR processes only. Thus it may be concluded
GR jumps modify the collective diffusion coefficie®,  that MC simulations help in pointing out the necessary modi-
which is no longer determined by E¢R4). The collective fications of the theory. Also, Fig. 5 shows that our analytical
diffusion coefficient may be obtained from Edq85) by the  calculations are sufficiently accurate even close to the phase
method described in Ref. 7. It is given by transition (the interaction parameter used in Fig. 5 is only
5.5% greater than the critical value,~1.76). This is be-
cause the defect concentration is still low, in spite of the
proximity of ¢ to the critical value. It follows from Eq(1)
that the defect number amounts for only 2.4% from the total
where v_3=1,e7%¢. Besides that, the GR source of fluctua- number of lattice sites in this case.
tions in the first of Eqs(25) is different from that in the We have also considered fluctuations at a specific cover-
second equation. This is in contrast to E(l), where the age,#=0.5-e 2¢ sinh/2, where(n®/n®)=€"¢. It is the cov-
same GR sources are involved in both equations. The differerage(symmetric to the case shown in Figs. 3 andvhere
ence is explained by the nonlocality of each GR event. Thehe adatom mobility has a deep minimdfrHence the influ-
nonlocality means that the defects in any generated or reence of nonlocality on the collective diffusidne., the con-
combined pair are spaced in three lattice constés#e ex- tribution of the third term in the numerator of E@6)] is the
planations to Fig. L Therefore the corresponding sourcesmost significant. A similar strong effect on fluctuations may
are noté-correlated in a spatial domain. Hence the correla-be expected. We see in Fig. 6 that the difference between
tors differ from those given by Eq15). Repeating the argu- data obtained from the two versions of the theory reaches
ments employed for derivation of E¢LO), we find 30% in some regions. Figure 6 shows a good agreement of

39
iwon’ = — DYk?on® + %razkznvane— ['(8n®n® + 8n¥n®)

+J7+(g-1)".

_ D°n®+D’n’ + 78v_za?

DC
ne + nU

: (26)
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0.025 ' ' b
$=2, 6=0.4785, n°/n"=e"
0.020 4 Dash. lines - non-locality of i
GR jumps accounted for
§° 0.015
A
‘§ FIG. 6. The same as in Fig. 5 for coverage
00104 9=3-e2sinhe/2 andp=2.
0.005
0.000 7 — e as s iiaan
1000 10000 100000
Number of MCS

MC simulations with the version of the theory accounting forincides with that forp=2 and a probe area of 2020 sites.

the nonlocal nature of GR events. At the same time, we see that the increase of decrease of
Figures 2—6 explain the details of adatom kinetics, whichl results in significant discrepancy between our theory and

may be studied by the comparison of MC and analytical datathe traditional approach.

At the same time it is not clear how these results compare to Similar graphs for MC data are shown in Fig.(8N%) o

the ones given by the traditional approach, which is based owas determined by Ed29). To obtain7, we have used the

the diffusion equation. For practical purposes, it is importantheoretical value of the collective diffusion coefficient given

to know the range of the validity of the traditional method. by Eq.(24). Similarly to the previous figure, we see consid-

To compare the two, we will express the correlation functionerable deviations of MC data from the universal curve.

obtained by the traditional theory in a form, which is similar Moreover, MC graphs have no tendency of mergingrat

to Eq.(18). It is given by —0. This is in accordance with the observation that hydro-
5 dynamic description of fluctuations is not applicable to the
a -D datom system at small times.
5N2=5N2_—fdd Dokl a y \ o
(ON)=¢ >t"04712I2 Kk S S The asymptotic values oy (r—) coincide with the
= (SNl 2(7) (29) ones given by the traditional approach. This can be easily
=0 ' explained. It is the case where only small-value wave vectors
where 7=|t|D(la)?, contribute to the correlation function of E€L8). Hence the
o . 2 diffusion terms in Eqs(14) and (25) are small when com-
I(7) = E] dx(w) e ™ pared to GR terms. Thus the local equilibrium is established
() X in the defect system and the decay of fluctuations is gov-

. . erned by the diffusion equation, which contains a collective
We can see from Eq28) that the normalized correlation diffusion coefficient as the unique relaxation parameter.

function of fluctuationg N?)/(6N?)-o=1%(7) is a universal It should be emphasized that the correlation function is
function of dimensionless time only. In other words, this very small just at large values af Hence, in the case of
fungtlon 'depgnds on 'the size of the probe area and the COI'Tigth ordered lattice-gas, obtainify, from asymptotic MC
lective diffusion coefficient not separately, but via the com-gat5 is very problematic, if possible at all.
bination definingr. The asymptotic value df(7) is given by Figures 7 and 8 show that the traditional fluctuation
1/(w7) for 7>1; whenr=0 we getl?=1. method is not applicable to the ordered lattice-gas, where
It is straightforward to obtain the ration(t) transport phenomena are controlled by the migration of
= (ON?),/(ON?),—q for our model of the ordered lattice-gas. A structural defects of different types. A similar conclusion fol-
value of lows from the paper of Gomer and UebitigThey have
N 20 simulated migration in a lattice-gas system undergqi®
(N = 250"+ 1) @ 5 1) ordering. It was shown that in the range of ordering, the
should be substituted there. In the case of noninteractingiffusion coefficients obtained within the Cubo-Green ap-
lattice-gas(oN?)—o=4126(1~6). The ratio may be plotted proach are very different from those obtained by the fluctua-
as a function ofr, thus providing direct comparison with the tion method(see Figs. 13-15 in Ref. 17
universal function?(7). Figure 7 illustrates the ratig(7) for Also, Refs. 18 and 19 should be mentioned. The tradi-
a set of interaction parameters and sizes of probe areas. Thienal version of fluctuation method was employed there for
case wher@=0.5 is considered. The curt&(7) almost co-  obtaining the collective diffusion coefficient. We find a dras-
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1.0 T LR | v LB | T LA |
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.. — ¢=2.0, 20x20
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FIG. 7. Theoretical dependence of normalized
- correlation function on the dimensionless time
= [7=|t|Dc(la)~?]. The plotl?(7) (thick solid line is
0.4 4 almost merged with the curve fap=2, 2=20
(thin solid line.
0.2 1
0.0 T LR | v Ty T LALLM |
0.01 0.1 1 10

tic disagreement of our data with the results of Refs. 18 andhe information about dissipative processes that is contained
19 in the range of high ordering. For example, wher0.5  in the correlation function of fluctuations. This study may be
and the interaction parameter is nearby 3, the diffusion useful for practical utilizing of the fluctuation method as an
coefficientD,, given by Eq.(24) is smaller by an order of important tool of adsorbate diagnostics. _
magnitude than the diffusion coefficient obtained in Refs. 18 Our analysis shows the distinct peculiarities of fluctuation
and 19(respectively, Figs. 6 and 8 ther@he reason for this Processes in the ordered system. The decay of fluctuations

the fluctuation method in the cited papers. case. It is shown that a direct use of the fluctuation method

for the determination of diffusion coefficient from real ex-
periments or MC simulations cannot be certain in the general
V. CONCLUSION case. On the other hand, the fluctuations contain information
about any dissipation mechanism in the adatom system and it
Concluding, we have studied density fluctuations in a sysis possible to use the fluctuation studies for obtaining physi-
tem with strong particle-particle interactions, where kineticcal quantities describing relaxation. Our consideration ex-
coefficients and correlation functions may be obtained anaplains how it can be done in specific cases. For example, the
lytically with good accuracy. Thus it becomes possible toFourier transform of the correlation function in E@3) is
compare in detail the results of MC simulations with therepresented by two terms with different relaxation param-
corresponding theory. The agreement ensures the adequaeters. It is a straightforward procedure to calculate this Fou-
of the theoretical method we have used. We have analyzeder transform from computer simulations of particle migra-

1.0“31:’].: —— T — T — T ]
O
0.9 “.g,fl‘m 6=0.5 0 $=3.00, 6x6 .
] = $=3.00, 20x20 ]
08 A =241, 6x6 ]
0.7 4 A $=2.41, 20x20 ]
T o ¢=2.00, 6x6 i
0.6 - e $=2.00, 20x20 _
] traditional theory
=~ 054 FIG. 8. MC data for normalized correlation
= 1 function are denoted by symbols. The pi#tr) is
0.4+ shown for comparison.
0.3
0.2
0.1
0.0 ————rrrrT ——rrrrrT ————}
0.01 0.1 1 10
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tion and get both functions. In such a way, any of the thredween analytical and MC data at small times, which is still
quantitiesD€®, DY, andI” could be obtained by means of MC beyond our approach.
simulations only. The collective diffusion coefficient may be = The model of particle jumpksee Eq.(2)] may be modi-
obtained in the usual way for sufficiently large probe areadied to take into account both the saddle-point effect and the
and not too large an interaction paramete discussion of energy of the final state. Such generalization may be done
the results shown in Figs. 7 and. 8 with ease as well as the consideration of lattice-gas systems
The theoretical approach used here is not applicable in theith another symmetry.
range of very small times and very small probe areas, where
hydrodynamic Eqgs(14) and (25) are not applicable. This
case requires a more general consideration, which does not
imply the valueka to be small. Our future work will cover This work was supported by NATO Collaborative Link-
this range, in order to attain the quantitative agreement beage Grant PST/CLG/979878.
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